ALIGNING SENTENCES IN BILINGUAL CORPORA USING LEXICAL INFORMATION

Stanley F. Chen*
Aiken Computation Laboratory
Division of Applied Sciences
Harvard University
Cambridge, MA 02138
Internet: sfc@calliope.harvard.edu

Abstract

In this paper, we describe a fast algorithm for aligning sentences with their translations in a bilingual corpus. Existing efficient algorithms ignore word identities and only consider sentence length (Brown et al., 1991b; Gale and Church, 1991). Our algorithm constructs a simple statistical word-to-word translation model on the fly during alignment. We find the alignment that maximizes the probability of generating the corpus with this translation model. We have achieved an error rate of approximately 0.4% on Canadian Hansard data, which is a significant improvement over previous results. The algorithm is language independent.

1 Introduction

In this paper, we describe an algorithm for aligning sentences with their translations in a bilingual corpus. Aligned bilingual corpora have proved useful in many tasks, including machine translation (Brown et al., 1990; Sadler, 1989), sense disambiguation (Brown et al., 1991a; Dagan et al., 1991; Gale et al., 1992), and bilingual lexicography (Klavans and Tzoukermann, 1990; Warwick and Russell, 1990).

The task is difficult because sentences frequently do not align one-to-one. Sometimes sentences align many-to-one, and often there are deletions in one of the supposedly parallel corpora of a bilingual corpus. These deletions can be substantial; in the Canadian Hansard corpus, there are many deletions of several thousand sentences and one deletion of over 90,000 sentences.

Previous work includes (Brown et al., 1991b) and (Gale and Church, 1991). In Brown, alignment is based solely on the number of words in each sentence: the actual identities of words are ignored. The general idea is that the closer in length two sentences are, the more likely they align. To perform the search for the best alignment, dynamic programming (Bellman, 1957) is used. Because dynamic programming requires time quadratic in the length of the text aligned, it is not practical to align a large corpus as a single unit. The computation required is drastically reduced if the bilingual corpus can be subdivided into smaller chunks. Brown uses anchors to perform this subdivision. An anchor is a piece of text likely to be present at the same location in both of the parallel corpora of a bilingual corpus. Dynamic programming is used to align anchors, and then dynamic programming is used again to align the text between anchors.

The Gale algorithm is similar to the Brown algorithm except that instead of basing alignment on the number of words in sentences, alignment is based on the number of characters in sentences. Dynamic programming is also used to search for the best alignment. Large corpora are assumed to be already subdivided into smaller chunks.

While these algorithms have achieved remarkably good performance, there is definite room for improvement. These algorithms are not robust with respect to non-literal translations and small deletions; they can easily misalign small passages because they ignore word identities. For example, the type of passage depicted in Figure 1 occurs in the Hansard corpus. With length-based alignment
algorithms, these passages may well be misaligned by an even number of sentences if one of the corpora contains a deletion. In addition, with length-based algorithms it is difficult to automatically recover from large deletions. In Brown, anchors are used to deal with this issue, but the selection of anchors requires manual inspection of the corpus to be aligned. Gale does not discuss this issue.

Alignment algorithms that use lexical information offer a potential for higher accuracy. Previous work includes (Kay, 1991) and (Catizone et al., 1989). However, to date lexically-based algorithms have not proved efficient enough to be suitable for large corpora.

In this paper, we describe a fast algorithm for sentence alignment that uses lexical information. The algorithm constructs a simple statistical word-to-word translation model on the fly during sentence alignment. We find the alignment that maximizes the probability of generating the corpus with this translation model. The search strategy used is dynamic programming with thresholding. Because of thresholding, the search is linear in the length of the corpus so that a corpus need not be subdivided into smaller chunks. The search strategy is robust with respect to large deletions; lexical information allows us to confidently identify the beginning and end of deletions.

2 The Alignment Model

2.1 The Alignment Framework

We use an example to introduce our framework for alignment. Consider the bilingual corpus \((\mathcal{E}, \mathcal{F})\) displayed in Figure 2. Assume that we have constructed a model for English-to-French translation, i.e., for all \(E\) and \(F_p\) we have an estimate for \(P(F_p|E)\), the probability that the English sentence \(E\) translates to the French passage \(F_p\). Then, we can assign a probability to the English corpus \(\mathcal{E}\) translating to the French corpus \(\mathcal{F}\) with a particular alignment. For example, consider the alignment \(\mathcal{A}_1\) where sentence \(E_1\) corresponds to sentence \(F_1\) and sentence \(E_2\) corresponds to sentences \(F_2\) and \(F_3\). We get

\[
P(\mathcal{F}, \mathcal{A}_1|\mathcal{E}) = P(F_1|E_1) P(F_2, F_3|E_2),
\]

assuming that successive sentences translate independently of each other. This value should be relatively large, since \(F_1\) is a good translation of \(E_1\) and \((F_2, F_3)\) is a good translation of \(E_2\). Another possible alignment \(\mathcal{A}_2\) is one where \(E_1\) maps to nothing and \(E_2\) maps to \(F_1\), \(F_2\), and \(F_3\). We get

\[
P(\mathcal{F}, \mathcal{A}_2|\mathcal{E}) = P(\epsilon |E_1) P(F_1, F_2, F_3|E_2)
\]

This value should be fairly low, since the alignment does not map the English sentences to their translations. Hence, if our translation model is accurate we will have

\[
P(\mathcal{F}, \mathcal{A}_1|\mathcal{E}) \gg P(\mathcal{F}, \mathcal{A}_2|\mathcal{E})
\]

In general, the more sentences that are mapped to their translations in an alignment \(\mathcal{A}\), the higher the value of \(P(\mathcal{F}, \mathcal{A}|\mathcal{E})\). We can extend this idea to produce an alignment algorithm given a translation model. In particular, we take the alignment of a corpus \((\mathcal{E}, \mathcal{F})\) to be the alignment \(\mathcal{A}\) that maximizes \(P(\mathcal{F}, \mathcal{A}|\mathcal{E})\). The more accurate the translation model, the more accurate the resulting alignment will be.

However, because the parameters are all of the form \(P(F_p|E)\) where \(E\) is a sentence, the above framework is not amenable to the situation where a French sentence corresponds to no English sentences. Hence, we use a slightly different framework. We view a bilingual corpus as a sequence of sentence beads (Brown et al., 1991b), where a sentence bead corresponds to an irreducible group of sentences that align with each other. For example, the correct alignment of the bilingual corpus in Figure 2 consists of the sentence bead \([E_1; F_1]\) followed by the sentence bead \([E_2; F_2, F_3]\). We can represent an alignment \(\mathcal{A}\) of a corpus as a sequence of sentence beads \(([E_1^1; F_1^1], [E_2^2; F_2^2], \ldots)\), where the \(E_p^p\) and \(F_p^p\) can be zero, one, or more sentences long.

Under this paradigm, instead of expressing the translation model as a conditional distribution \(P(F_p|E)\) we express the translation model as a distribution \(P([E_p; F_p])\) over sentence beads. The
alignment problem becomes discovering the alignment \(\mathcal{A} \) that maximizes the joint distribution \(P(\mathcal{E}, \mathcal{F}, \mathcal{A}) \). Assuming that successive sentence beads are generated independently, we get
\[
P(\mathcal{E}, \mathcal{F}, \mathcal{A}) = p(L) \prod_{k=1}^{L} P([E_{F_P}^k ; F_P^k])
\]
where \(\mathcal{A} = ([E_1^1, E_1^2], \ldots, [E_L^1, F_P^L]) \) is consistent with \(\mathcal{E} \) and \(\mathcal{F} \) and where \(p(L) \) is the probability that a corpus contains \(L \) sentence beads.

2.2 The Basic Translation Model

For our translation model, we desire the simplest model that incorporates lexical information effectively. We describe our model in terms of a series of increasingly complex models. In this section, we only consider the generation of sentence beads containing a single English sentence \(E = e_1 \cdots e_n \) and single French sentence \(F = f_1 \cdots f_m \). As a starting point, consider a model that assumes that all individual words are independent. We take
\[
P([E; F]) = p(n)p(m) \prod_{i=1}^{n} p(e_i) \prod_{j=1}^{m} p(f_j)
\]
where \(p(n) \) is the probability that an English sentence is \(n \) words long, \(p(m) \) is the probability that a French sentence is \(m \) words long, \(p(e_i) \) is the frequency of the word \(e_i \) in English, and \(p(f_j) \) is the frequency of the word \(f_j \) in French.

To capture the dependence between individual English words and individual French words, we generate English and French words in pairs in addition to singly. For two words \(e \) and \(f \) that are mutual translations, instead of having the two terms \(p(e) \) and \(p(f) \) in the above equation we would like a single term \(p(e, f) \) that is substantially larger than \(p(e)p(f) \). To this end, we introduce the concept of a word bead. A word bead is either a single English word, a single French word, or a single English word and a single French word. We refer to these as 1:0, 0:1, and 1:1 word beads, respectively. Instead of generating a pair of sentences word by word, we generate sentences bead by bead, using the 1:1 word beads to capture the dependence between English and French words.

As a first cut, consider the following “model”:
\[
P^c(B) = p(l) \prod_{i=1}^{l} p(b_i)
\]
where \(B = \{b_1, \ldots, b_l\} \) is a multiset of word beads, \(p(l) \) is the probability that an English sentence and a French sentence contain \(l \) word beads, and \(p(b_i) \) denotes the frequency of the word bead \(b_i \). This simple model captures lexical dependencies between English and French sentences.

However, this “model” does not satisfy the constraint that \(\sum_B P^c(B) = 1 \); because beadings \(B \) are unordered multisets, the sum is substantially less than one. To force this model to sum to one, we simply normalize by a constant so that we retain the qualitative aspects of the model. We take
\[
P(B) = \frac{p(l)}{N_l} \prod_{i=1}^{l} p(b_i)
\]

While a beading \(B \) describes an unordered multiset of English and French words, sentences are in actuality ordered sequences of words. We need to model word ordering, and ideally the probability of a sentence bead should depend on the ordering of its component words. For example, the sentence \(\text{John ate Fido} \) should have a higher probability of aligning with the sentence \(\text{Jean a mangé Fido} \) than with the sentence \(\text{Fido a mangé Jean} \). However, modeling word order under translation is notoriously difficult (Brown et al., 1993), and it is unclear how much improvement in accuracy a
good model of word order would provide. Hence, we model word order using a uniform distribution; we take
\[P([E; F], B) = \frac{p(l)}{N^{m!m!}} \prod_{i=1}^{l} p(b_i) \]
which gives us
\[P([E; F]) = \sum_{B} \frac{p(l_B)}{N_{i_B} n!n!} \prod_{i=1}^{l_B} p(b_i) \]
where \(B \) ranges over beadings consistent with \([E; F]\) and \(l_B \) denotes the number of beads in \(B \). Recall that \(n \) is the length of the English sentence and \(m \) is the length of the French sentence.

2.3 The Complete Translation Model

In this section, we extend the translation model to other types of sentence beads. For simplicity, we only consider sentence beads consisting of one English sentence, one French sentence, one English sentence and one French sentence, two English sentences and one French sentence, and one English sentence and two French sentences. We refer to these as \(1:0, 0:1, 1:1, 2:1, \) and \(1:2 \) sentence beads, respectively.

For \(1:1 \) sentence beads, we take
\[P([E; F]) = p_{1:1} \sum_{B} \frac{p_{1:1}(l_B)}{N_{i_B} 1!1!} \prod_{i=1}^{l_B} p(b_i) \]
where \(B \) ranges over beadings consistent with \([E; F]\) and \(p_{1:1} \) is the probability of generating a \(1:1 \) sentence bead.

To model \(1:0 \) sentence beads, we use a similar equation except that we only use \(1:0 \) word beads, and we do not need to sum over beadings since there is only one word beadings consistent with a \(1:0 \) sentence bead. We take
\[P([E]) = p_{1:0} \frac{p_{1:0}(l)}{N_{i_{1:0}} 0!0!} \prod_{i=1}^{l} p(e_i) \]
Notice that \(n = l \). We use an analogous equation for \(0:1 \) sentence beads.

For \(2:1 \) sentence beads, we take
\[Pr([E_1, E_2; F]) = p_{2:1} \sum_{B} \frac{p_{2:1}(l_B)}{N_{i_{2:1}} 2!1!} \prod_{i=1}^{l_B} p(b_i) \]
where the sum ranges over beadings \(B \) consistent with the sentence bead. We use an analogous equation for \(1:2 \) sentence beads.

3 Implementation

In this section, we describe our implementation of the alignment algorithm. We describe how we train the translation model, and how we perform the search for the best alignment. In addition, we describe approximations that were made to make the algorithm computationally tractable. We hypothesized that because our translation model incorporates lexical information strongly, correct alignments are tremendously more probable than incorrect alignments so that moderate errors in calculation should not greatly affect results.

3.1 Normalization

The evaluation of the normalization constants \(N_i \) is very expensive. For example, we have that
\[N_{1:1:0} = \sum_{\{e_1, \ldots, e_l\}} \prod_{i=1}^{l} p(e_i) \]
In our algorithm, we continually update the parameters \(p(e_i) \) as we align (so the values \(N_i \) are not technically constants), and it is impractical to frequently evaluate the preceding sum. Hence, we only approximate the normalization constants \(N_i \).

Let us first consider the constants \(N_{1:1:0} \). Notice that when we sum over ordered lists instead of unordered sets we have the relation
\[\sum_{\{e_1, \ldots, e_l\}} \prod_{i=1}^{l} p(e_i) = 1 \]
Let \(O(E) \) be the number of distinct lists that can be formed using all of the words \(e_1, \ldots, e_l \).

Then, we have
\[\sum_{E \in \{e_1, \ldots, e_l\}} O(E) \prod_{i=1}^{l} p(e_i) = 1 \]
We make the approximation that \(O(E) = l! \) for all \(E \). This approximation is exact for all sets \(E \) containing no duplicate words. This gives us
\[N_{1:1:0} \approx \frac{1}{l!} \]
We use analogous approximations for \(N_{1:0:1} \) and \(N_{1:1:1} \).

Now, let us consider the constants \(N_{1:2:1} \). The above derivation does not apply because to sum over all \(2:1 \) sentence beads with a given number
of word beads, not only do we need to sum over all sets of words beads of the given size, but we need to sum over all distinct ways that the English words can be distributed among the two English sentences as well, i.e.,

\[
N_{l,2:1} = \sum_{\{b_1, \ldots, b_l\}, M} \prod_{i=1}^{l} p(b_i)
\]

where we use \(M \) to denote a particular division of the English words in the word beads \(\{b_1, \ldots, b_l\} \) among the two English sentences. If a set of word beads contains \(n \) English words, then \(M \) can be represented by a list of \(n \) bits, each bit reflecting whether a particular word belongs to the first or second English sentence in the sentence bead.

The first approximation we make is that \(p(b) \) is a uniform distribution, i.e., \(p(b) = \frac{1}{M} \) for all \(b \) where \(V \) is the number of word beads in our vocabulary. This gives us

\[
N_{l,2:1} \approx \sum_{\{b_1, \ldots, b_l\}, M} \frac{1}{V^l}
\]

Let \(n(B) \) be the number of English words in the beading \(B \). There are \(2^{n(B)} \) different mappings \(M \) consistent with the beading \(B \), as each of the \(n(B) \) English words can be placed in either of two sentences. This gives us

\[
N_{l,2:1} \approx \sum_{B=\{b_1, \ldots, b_l\}} 2^{n(B)} \frac{1}{V^l}
\]

Let \(b_l(n) \) be the number of bead sets \(B \) of size \(l \) containing exactly \(n \) English words. We can rewrite the preceding sum as

\[
N_{l,2:1} \approx \sum_{n=0}^{l} b_l(n) 2^{n(B)} \frac{1}{V^l}
\]

To approximate \(b_l(n) \), let \(V_+ \) be the number of different word beads containing English words, and let \(V_- \) be the number of different word beads not containing English words, i.e., \(V = V_+ + V_- \). Notice that the number of bead lists (as opposed to sets) \(b_l'(n) \) of length \(l \) containing \(n \) English words is

\[
b_l'(n) = \binom{l}{n} V_+^n V_-^{l-n}
\]

To estimate the number of bead sets \(b_l(n) \), we use the same approximation used in calculating \(N_{l,1:0} \) and simply divide by \(l! \). This gives us

\[
b_l(n) \approx \frac{1}{l!} \binom{l}{n} V_+^n V_-^{l-n}
\]

and substituting we get

\[
N_{l,2:1} \approx \sum_{n=0}^{l} \frac{1}{l!} \binom{l}{n} \frac{V_+^n V_-^{l-n}}{V^l} 2^n
\]

Using the binomial theorem, we get

\[
N_{l,2:1} \approx \frac{1}{l!} \left(\frac{2V_+}{V} + \frac{V_-}{V} \right)^l
\]

and finally

\[
N_{l,2:1} \approx \frac{(1 + \frac{V_-}{V})^l}{l!}
\]

We use an analogous approximation for \(N_{l,1:2} \).

3.2 Parameterization

We chose to model sentence length using a Poisson distribution, i.e., we took

\[
p_{l,0:1}(l) = \frac{\lambda_{1:0}^l}{l!} e^{-\lambda_{1:0}}
\]

for some \(\lambda_{1:0} \), and analogously for the other types of sentence beads. At first, we tried to estimate each \(\lambda \) parameter independently, but we found that after training one or two \(\lambda \) would be unnaturally small or large in order to specifically model very short or very long sentences. To prevent this phenomenon, we tied the \(\lambda \) values for the different types of sentence beads together. We took

\[
\lambda_{1:0} = \lambda_{0:1} = \lambda_{1:1} = \frac{\lambda_{2:3}}{3} = \frac{\lambda_{1:2}}{3}
\]

(1)

To model the parameters \(p(l) \) representing the probability that the bilingual corpus is \(L \) sentence beads in length, we assumed a uniform distribution.\(^1\) This allows us to ignore this term, since length will not influence the probability of an alignment. We felt this was reasonable because it is unclear what a priori information we have on the length of a corpus.

In modeling the frequency of word beads, notice that there are five distinct distributions we need to model: the distribution of 1:0 word beads in 1:0 sentence beads, the distribution of 0:1 word beads in 0:1 sentence beads, and the distribution of all word beads in 1:1, 2:1, and 1:2 sentence beads. To reduce the number of independent parameters we need to estimate, we tied these distributions together. We assumed that the distribution of word

\(^1\)To be precise, we assumed a uniform distribution over some arbitrarily large finite range, as one cannot have a uniform distribution over a countably infinite set.
beads in 1:1, 2:1, and 1:2 sentence beads are identical. We took the distribution of word beads in 1:0 and 0:1 sentence beads to be identical as well except restricted to the relevant subset of word beads and normalized appropriately, i.e., we took

\[p_e(c) = \frac{p_b(c)}{\sum_{c' \in B_e} p_b(c')} \quad \text{for } e \in B_e \]

and

\[p_f(f) = \frac{p_b(f)}{\sum_{f' \in B_f} p_b(f')} \quad \text{for } f \in B_f \]

where \(p_e \) refers to the distribution of word beads in 1:0 sentence beads, \(p_f \) refers to the distribution of word beads in 0:1 sentence beads, \(p_b \) refers to the distribution of word beads in 1:1, 2:1, and 1:2 sentence beads, and \(B_e \) and \(B_f \) refer to the sets of 1:0 and 0:1 word beads in the vocabulary, respectively.

To further reduce the number of parameters, we converted all words to lowercase, e.g., we considered the words \textit{May} and \textit{may} to be identical.

3.3 Evaluating the Probability of a Sentence Bead

The probability of generating a 0:1 or 1:0 sentence bead can be calculated efficiently using the equation given in Section 2.3. To evaluate the probabilities of the other sentence beads requires a sum over an exponential number of word beadings. We make the gross approximation that this sum is roughly equal to the maximum term in the sum. For example, with 1:1 sentence beads we have

\[
P([E; F]) = \prod_{i=1}^{N_{in,1:1}} \frac{p_{1:1}(l_{in})}{N_{in,1:1}! m_1!} \prod_{i=1}^{l_n} p(b_i)
\approx \max_{B} \prod_{i=1}^{N_{in,1:1}} \frac{p_{1:1}(l_{in})}{N_{in,1:1}! m_1!} \prod_{i=1}^{l_n} p(b_i)
\]

Even with this approximation, the calculation of \(P([E; F]) \) is still intractable since it requires a search for the most probable beading. We use a greedy heuristic to perform this search; we are not guaranteed to find the most probable beading. We begin with every word in its own bead. We then find the 0:1 bead and 1:0 bead that, when replaced with a 1:1 word bead, results in the greatest increase in probability. We repeat this process until we can no longer find a 0:1 and 1:0 bead pair that when replaced would increase the probability of the beading.

This calculation can be performed in time roughly linear in the sum of the number of words in the involved sentences, as long as for most words \(e \) there are few words \(f \) such that the probability of generating the word bead \((e, f)\) is nonzero. To do this calculation efficiently, one needs an array of lists the size of the French vocabulary (or English vocabulary, if the symmetric calculation is performed). For each word \(e \) in the English sentence, find all French words \(f \) such that the probability of generating the word bead \((e, f)\) is nonzero, and append all such beads \((e, f)\) to the list associated with word \(f \). Then, merge the lists associated with each word \(f \) in the French sentence, and sort the resulting list according to the increase in probability associated with each bead. Performing the calculation described in the last paragraph is then fairly straightforward.

3.4 Parameter Estimation

We estimate parameters by using a variation of the Viterbi version of the expectation-maximization (EM) algorithm (Dempster et al., 1977). The Viterbi version is used to reduce computational complexity. We use an incremental variation of the algorithm to reduce the number of passes through the corpus required.

In the EM algorithm, an expectation phase, where counts on the corpus are taken using the current estimates of the parameters, is alternated with a maximization phase, where parameters are re-estimated based on the counts just taken. Improved parameters lead to improved counts which lead to even more accurate parameters. In the incremental version of the EM algorithm we use, instead of re-estimating parameters after each complete pass through the corpus, we re-estimate parameters after each sentence. By re-estimating parameters continually as we take counts on the corpus, we can align later sections of the corpus more reliably based on alignments of earlier sections. We can align a corpus with only a single pass, simultaneously producing alignments and updating the model as we proceed.

More specifically, we initialize parameters by taking counts on a small body of previously aligned data. To estimate word bead frequencies, we maintain a count \(c(b) \) for each word bead that records the number of times the word bead \(b \) occurs in the most probable word beading of a sen-
tence bead. We take

\[p_b(b) = \frac{c(b)}{\sum_{b'} c(b')} \]

We initialize the counts \(c(b) \) to 1 for 0:1 and 1:0 word beads, so that these beads can occur in beadings with nonzero probability. To enable 1:1 word beads to occur in beadings with nonzero probability, we initialize their counts to a small value whenever we see the corresponding 0:1 and 1:0 word beads occur in the most probable word beading of a sentence bead.

To estimate the sentence length parameters \(\lambda \), we divide the number of word beads in the most probable beading of the initial training data by the total number of sentences. This gives us an estimate for \(\lambda_{1:0} \), and the other \(\lambda \) parameters can be calculated using equation (1).

To estimate the probabilities \(p_{1:0}, p_{0:1}, p_{1:1}, p_{2:1}, \) and \(p_{1:2} \) of each type of sentence bead occurring, we simply count the number of times each type of bead occurred in the initial training data and divide by the total number of sentence beads.

We have found that one hundred sentence pairs are sufficient to train the model to a state where it can align adequately. At this point, we can process unaligned text and use the alignments we produce to further train the model. We update parameters based on the newly aligned text in the same way that we update parameters based on the initial training data.\(^2\)

To align a corpus in a single pass the model must be fairly accurate before starting or else the beginning of the corpus will be poorly aligned. Hence, after bootstrapping the model on one hundred sentence pairs, we train the algorithm on a chunk of the unaligned target bilingual corpus, typically 20,000 sentence pairs, before making one pass through the entire corpus to produce the actual alignment.

\(^2\) In theory, one cannot decide whether a particular sentence bead belongs to the best alignment of a corpus until the whole corpus has been processed. In practice, some partial alignments will have much higher probabilities than all other alignments, and it is desirable to train on these partial alignments to aid in aligning later sections of the corpus. To decide when it is reasonably safe to train on a particular sentence bead, we take advantage of the thresholding described in Section 3.6, where improbable partial alignments are discarded. At a given point in time in aligning a corpus, all undiscarded partial alignments will have some sentence beads in common. When a sentence bead is common to all active partial alignments, we consider it to be safe to train on.

3.5 Cognates

Often, a given spelling will possess the same meaning in two different languages. For example, punctuation, numbers, and proper names usually have the same meanings in English and French. Such words are members of a class called cognates (Simard et al., 1992). Because identically spelled words can be recognized automatically and because identically spelled words are frequently translations of each other, it seems sensible to use this a priori information in initializing word bead frequencies. To this end, we simply initialize to a small value the count of all 1:1 word beads whose two words are spelled identically.

3.6 Search

It is natural to use dynamic programming to search for the best alignment; one can find the most probable of an exponential number of alignments using quadratic time and memory. Alignment can be viewed as a “shortest distance” problem, where the “distance” associated with a sentence bead is the negative logarithm of its probability. The probability of an alignment is inversely related to the sum of the distances associated with its component sentence beads.

In particular, the most probable alignment of the first \(i \) sentences of the English corpus and the first \(j \) sentences of the French corpus can be calculated using the following recurrence:

\[
D(i, j) = \min \left\{ \begin{array}{c} D(i, j - 1) + d(i, j, 0, 1) \\
D(i - 1, j) + d(i, j, 1, 0) \\
D(i - 1, j - 1) + d(i, j, 1, 1) \\
D(i - 2, j - 1) + d(i, j, 2, 1) \\
D(i - 1, j - 2) + d(i, j, 1, 2) \end{array} \right.
\]

where \(D(0, 0) = 0 \) and where \(d(i, j, k, l) \) denotes the negative logarithm of the probability of generating the sentence bead containing the \((i-k+1)th\) through \(i\)th sentences of the English corpus and the \((j-l+1)th\) through \(j\)th sentences of the French corpus.

Given the size of existing bilingual corpora and the computation necessary to evaluate the probability of a sentence bead, a quadratic algorithm is still too profligate. However, most alignments are one-to-one, so we can reap great benefits through intelligent thresholding. By considering only a subset of all possible alignments, we reduce the computation to a linear one.

Dynamic programming consists of incrementally finding the best alignment of longer and longer
prefixes of the bilingual corpus. We prune all alignment prefixes that have a substantially lower probability than the most probable alignment prefix of the same length.

More specifically, the value of $D(i, j)$ grows proportionally to $i + j$. Hence, it is reasonable to compare $D(i, j)$ with $D(i’, j’)$ if $i + j = i’ + j’$. Whenever $D(i, j) > D(i’, j’)+c$ for some $i’, j’$ and constant c where $i + j = i’ + j’$, we set $D(i, j)$ to ∞. This discards from consideration all alignments that begin by aligning the first i English sentences with the first j French sentences. We evaluate the array $D(i, j)$ diagonal by diagonal, so that $i + j$ increases monotonically. For c, we used the value 500 (where natural logarithms were used), and this resulted in an average search beam width through the dynamic programming lattice of about thirty.

3.7 Deletion Identification

Deletions are automatically handled within the standard dynamic programming framework. However, because of thresholding, we must handle large deletions using a separate mechanism.

Because lexical information is used, correct alignments receive vastly greater probabilities than incorrect alignments. Consequently, thresholding is generally very aggressive and our search beam in the dynamic programming array is narrow. However, when there is a large deletion in one of the parallel corpora, consistent lexical correspondences disappear so no one alignment has a much higher probability than the others and our search beam becomes wide. When the search beam reaches a certain width, we take this to indicate the beginning of a deletion.

To be more precise, we use the concept of the confluence point in thresholding to identify deletions. At a given point in filling the array $D(i, j)$, we have a set of partial alignments that are still under active consideration (corresponding to the situation where $D(i, j) < \infty$), and there are a set of sentence beads which are common to all of these partial alignments. All such sentence beads are guaranteed to belong to the calculated alignment of the whole corpus. The location of the most advanced such sentence bead is called the confluence point. The confluence point is an estimate of the point behind which we are “sure” of sentence alignments.

In thresholding with $c = 500$, we have found that the confluence point is typically about thirty sentences away from the frontier of where we are calculating the array $D(i, j)$. When the confluence point becomes significantly more distant from the frontier than this, apparently there is no one particular outstanding alignment and we take this to indicate a deletion. Whenever the confluence point lagged 400 sentences behind the frontier, we assumed a deletion was encountered.

To identify the end of a deletion, we search linearly through both corpora simultaneously. All occurrences of words whose frequency is below a certain value are recorded in a hash table. Whenever we notice the occurrence of a rare word in one corpus and its translation in the other, we take this as a candidate location for the end of the deletion. For each candidate location, we find the probability of generating the sentence bead composed of the two sentences containing the two rare words. If this is “sufficiently high,” we examine the forty sentences following the occurrence of the rare word in each of the two parallel corpora. We use dynamic programming to find the probability of the best alignment of these two blocks of sentences. If this probability is also “sufficiently high” we take the candidate location to be the end of the deletion. Because it is extremely unlikely that there are two very similar sets of forty sentences in a corpus, this deletion identification algorithm is robust. In addition, because we key off of rare words in considering ending points, deletion identification requires time linear in the length of the deletion.

We consider the probability of an alignment to be “sufficiently high” if the alignment captures a certain fraction of the possible lexical dependencies with the sentences in one language, in our case English. Given the English sentences in question, we find the French sentences of the same length that maximize the alignment probability. This can be done by finding the best word-to-word translations for each English word. We divide the probability of the ideal alignment of these sentences by the probability yielded if these sentences were aligned entirely with 0:1 and 1:0 sentence beads. This value is an estimate of the maximum contribution of lexical dependencies in an alignment with the given English sentences. To produce a comparable value for the original alignment, we also divide that probability by the probability of the 0:1 and 1:0 alignment. We then divide the logarithm of the value arrived at for the original alignment by the value arrived at for the ideal alignment to produce an estimate of the fraction of possible lexical dependencies captured in the origi-
3.8 Subdividing a Corpus for Parallelization

Sentence alignment is a task that seems well-suited to parallelization, since the alignment of different sections of a bilingual corpus are basically independent. However, to parallelize sentence alignment it is necessary to be able to divide a bilingual corpus into many sections accurately. The deletion recovery mechanism can be used to this end. We start at the beginning of each corpus in the bilingual corpus, and skip some number of sentences in each corpus. The number of sentences we skip is the number of sentences we want in each subdivision of the bilingual corpus. We then employ the deletion recovery mechanism to find a subsequent point in the two corpora that align, and we take this to be the end of the subdivision. We repeat this process to divide the whole corpus into small sections.

4 Results

Using this algorithm, we have aligned three large English/French corpora. We have aligned a corpus of 3,000,000 sentences (of both English and French) of the Canadian Hansards, a corpus of 1,000,000 sentences of newer Hansard proceedings, and a corpus of 2,000,000 sentences of proceedings from the European Economic Community. In each case, we first bootstrapped the translation model by training on 100 previously aligned sentence pairs. We then trained the model further on 20,000 sentences of the target corpus. Note that these 20,000 sentences were not previously aligned.

Because of the very low error rates involved, instead of direct sampling we decided to estimate the error of the old Hansard corpus through comparison with the alignment found by Brown of the same corpus. We manually inspected over 500 locations where the two alignments differed to estimate our error rate on the alignments disagreed upon. Taking the error rate of the Brown alignment to be 0.6%, we estimated the overall error rate of our alignment to be 0.4%.

In addition, in the Brown alignment approximately 10% of the corpus was discarded because of indications that it would be difficult to align. Their error rate of 0.6% holds on the remaining sentences. Our error rate of 0.4% holds on the entire corpus. Gale reports an approximate error rate of 2% on a different body of Hansard data with no discarding, and an error rate of 0.4% if 20% of the sentences can be discarded.

Hence, with our algorithm we can achieve at least as high accuracy as the Brown and Gale algorithms without discarding any data. This is especially significant since, presumably, the sentences discarded by the Brown and Gale algorithms are those sentences most difficult to align.

In addition, the errors made by our algorithm are generally of a fairly trivial nature. We randomly sampled 300 alignments from the newer Hansard corpus. The two errors we found are displayed in Figures 3 and 4. In the first error, E_1 was aligned with F_1 and E_2 was aligned with F_2. The correct alignment maps E_1 and E_2 to F_1 and F_2 to nothing. In the second error, E_1 was aligned with F_1 and F_2 was aligned to nothing. Both of these errors could have been avoided with improved sentence boundary detection. Because length-based alignment algorithms ignore lexical information, their errors can be of a more spectacular nature.

The rate of alignment ranged from 2,000 to 5,000 sentences of both English and French per hour on an IBM RS/6000 530R workstation. Using the technique described in section 3.8, we subdivided corpora into small sections (20,000 sentences) and aligned sections in parallel. While it required on the order of 500 machine-hours to align the newer Hansard corpus, it took only 1.5 days of real time to complete the job on fifteen machines.
4.1 Lexical Correspondences

One of the by-products of alignment is a probabilistic word-to-word bilingual dictionary. In Appendix A, we list some randomly sampled lexical correspondences. In general, the correspondences are fairly accurate. However, for some common prepositions the correspondences are rather poor. Prepositions sometimes occur in situations in which they have no good translation, and they often have many different translations.

In many lists, the “French” word with the exact same spelling as the English word occurs near the top of the list. (A word is considered to be “French” if it occurs at any point in the French corpus.) This is due to the initialization described in Section 3.5 we perform for cognates.

Notice that we are capable of acquiring strong lexical correspondences between non-cognates. Preliminary experiments indicate that cognate initialization does not significantly affect alignment accuracy. Hence, our alignment algorithm is applicable to languages with differing alphabets.

5 Discussion

We have described an accurate, robust, and fast algorithm for sentence alignment. The algorithm can handle large deletions in text, it is language independent, and it is parallelizable. It requires a minimum of human intervention; for each language pair 100 sentences need to be aligned by hand to bootstrap the translation model. It produces a statistical bilingual dictionary, and it can take advantage of cognate correspondences, if present.

The use of lexical information requires a great computational cost. Even with numerous approximations, this algorithm is tens of times slower than the Brown and Gale algorithms. This is acceptable given that alignment is a one-time cost and given available computing power. It is unclear, though, how much further it is worthwhile to proceed.

The natural next step in sentence alignment is to account for word ordering in the translation model. e.g., the models described in (Brown et al., 1993) could be used. However, substantially greater computing power is required before these approaches can become practical, and there is not much room for further improvements in accuracy.

Acknowledgements

We give special thanks to Peter Brown, Stephen DellaPietra, Vincent DellaPietra, and Robert Mercer for their suggestions, support, and relentless taunting. We thank Jan Hajic and Meredith Goldsmith as well as the aforementioned for checking the alignments produced by the implementation. In addition, Stuart Shieber and Andrew Kehler provided valuable comments on earlier drafts of this paper.

The preparation of this paper was supported in part by Presidential Young Investigator grant IRI-9157996 to Stuart M. Shieber and matching grants from the Digital Equipment Corporation and the Xerox Corporation.
References

A Random Sample of Lexical Correspondences

In this section, we list randomly sampled lexical correspondences acquired during the alignment of 20,000 sentences pairs. We only list words occurring at least ten times. The number adjacent to the head word is the number of times that word occurred in the corpus. The number next to each French word f is the value

\[
\log \frac{p_e(c,f)}{p_e(c)\tilde{p}_e(f)}
\]
where \(e \) is the corresponding English word. This value describes the benefit reaped when the 1:0 and 0:1 word beads \((e)\) and \((f)\) are replaced with the word bead \((e, f)\) in a parse. This value is closely related to mutual information; it differs in that the term in the numerator is not a joint distribution.

<table>
<thead>
<tr>
<th>quality (27.0)</th>
<th>stocks (17.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>qualiété</td>
<td>stocks</td>
</tr>
<tr>
<td>qualitatives</td>
<td>réserves</td>
</tr>
<tr>
<td>eaux</td>
<td>bancs</td>
</tr>
<tr>
<td></td>
<td>valeurs</td>
</tr>
<tr>
<td></td>
<td>actions</td>
</tr>
<tr>
<td></td>
<td>exécuter</td>
</tr>
<tr>
<td>keeps (16.0)</td>
<td>steadily (14.0)</td>
</tr>
<tr>
<td>engagée</td>
<td>constamment</td>
</tr>
<tr>
<td>continue</td>
<td>cesse</td>
</tr>
<tr>
<td>que</td>
<td></td>
</tr>
<tr>
<td>floor (30.0)</td>
<td>enterprises (21.0)</td>
</tr>
<tr>
<td>plancher</td>
<td>entreprises</td>
</tr>
<tr>
<td>parole</td>
<td>poursuite</td>
</tr>
<tr>
<td>locataires</td>
<td>faciliter</td>
</tr>
<tr>
<td>chambre</td>
<td>importance</td>
</tr>
<tr>
<td></td>
<td>même</td>
</tr>
<tr>
<td></td>
<td>une</td>
</tr>
<tr>
<td>losing (19.0)</td>
<td>appear (35.0)</td>
</tr>
<tr>
<td>perdons</td>
<td>comparateur</td>
</tr>
<tr>
<td>perd</td>
<td>semblent</td>
</tr>
<tr>
<td>perdre</td>
<td>semble</td>
</tr>
<tr>
<td></td>
<td>voulons</td>
</tr>
<tr>
<td></td>
<td>frais</td>
</tr>
<tr>
<td></td>
<td>-t-</td>
</tr>
<tr>
<td>form (70.0)</td>
<td>combined (13.0)</td>
</tr>
<tr>
<td>forme</td>
<td>joints</td>
</tr>
<tr>
<td>trouveraient</td>
<td>deux</td>
</tr>
<tr>
<td>sorte</td>
<td></td>
</tr>
<tr>
<td>obligations</td>
<td>delivery (17.0)</td>
</tr>
<tr>
<td>ajouter</td>
<td>livraison</td>
</tr>
<tr>
<td>sous</td>
<td>livraisons</td>
</tr>
<tr>
<td>une</td>
<td>modifiées</td>
</tr>
<tr>
<td>avons</td>
<td>cependant</td>
</tr>
<tr>
<td></td>
<td>avant</td>
</tr>
<tr>
<td></td>
<td>;</td>
</tr>
<tr>
<td>houses (20.0)</td>
<td>minimum (27.0)</td>
</tr>
<tr>
<td>maisons</td>
<td>minimum</td>
</tr>
<tr>
<td>chambres</td>
<td>minimal</td>
</tr>
<tr>
<td>habitations</td>
<td>minimaux</td>
</tr>
<tr>
<td>maison</td>
<td>minimums</td>
</tr>
<tr>
<td>domiciliaire</td>
<td>minimales</td>
</tr>
<tr>
<td>logements</td>
<td>étudiées</td>
</tr>
<tr>
<td>parlementaires</td>
<td>moins</td>
</tr>
<tr>
<td>acheter</td>
<td>jusque</td>
</tr>
<tr>
<td></td>
<td>avec</td>
</tr>
<tr>
<td>throughout (33.0)</td>
<td>especially (25.0)</td>
</tr>
<tr>
<td>travers</td>
<td>surtout</td>
</tr>
<tr>
<td>agriculteurs</td>
<td>particulièrement</td>
</tr>
<tr>
<td>long</td>
<td>spécialement</td>
</tr>
<tr>
<td>toute</td>
<td>particulier</td>
</tr>
<tr>
<td>dans</td>
<td>notamment</td>
</tr>
<tr>
<td>organismes</td>
<td>précisément</td>
</tr>
<tr>
<td>où</td>
<td>assurer</td>
</tr>
<tr>
<td>durant</td>
<td>qui</td>
</tr>
<tr>
<td>moyens</td>
<td></td>
</tr>
<tr>
<td>tout</td>
<td></td>
</tr>
</tbody>
</table>
A.1 Poor Correspondences

In this section, we list some selected English words for which the acquired lexical correspondences are not overly appropriate.

the (19379.0)
- the 7.42
- la 6.56
- à 5.65
- au 5.23
- encouragé 5.17
- cette 4.96
- prescrit 4.93
- profitable 4.92
- parenchymes 4.90
- tenu 4.86

at (2292.0)
- at 7.66
- heures 6.89
- ent reposes 6.60
- heure 6.39
- conformité 5.98
- rapatrié 5.95
- immobilisés 5.93
- lors 5.89
- voyant 5.89
- respectifs 5.88

on (1577.0)
- commenter 6.96
- au 6.84
- devrai 6.70
- visites 6.63