
RC25631 (WAT1610-075) October 19, 2016
Computer Science

Research Division
Almaden – Austin – Beijing – Brazil – Cambridge – Dublin – Haifa – India – Kenya – Melbourne – T.J. Watson – Tokyo – Zurich

IBM Research Report

Model M Lite: A Fast Class-Based Language Model

Stanley F. Chen
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598 USA



Model M Lite: A Fast Class-Based Language Model

Stanley F. Chen
IBM T.J. Watson Research Center

P.O. Box 218, Yorktown Heights, NY 10598
stanchen@us.ibm.com

July 15, 2016

Abstract

While advanced language models such as neural network language models and Model M
have achieved superior performance as compared to word n-gram models, they are generally
much more expensive computationally to train and to decode with. As a result, word n-gram
models remain dominant in real-world speech recognition applications. In this paper, we in-
vestigate whether it is possible to design a language model with similar performance to Model
M that can be trained and applied with similar expense as a word n-gram model. We pro-
pose Model M Lite, an ensemble of class-based back-off n-gram models that contains a similar
set of n-gram features as Model M. The ensemble of models can be stored compactly and is
only slightly larger than a comparable Model M. We evaluate several schemes for dynamically
choosing interpolation weights for the ensemble members. On a Wall Street Journal task, our
new model achieves 73% to 92% of the absolute gain in word-error rate of a 4-gram Model
M as compared to a word 4-gram model, translating to an absolute gain of up to 2% over the
baseline.

1 Introduction

While neural network language models (Bengio et al., 2003; Mikolov et al., 2010) and Model
M (Chen, 2009), a class-based exponential model, have yielded substantial gains over word n-
gram models in speech recognition word-error rate, these gains come at a large computational cost.
Neural network language models and Model M require iterative training that may take days or even
weeks for training sets of hundreds of millions of words (Mikolov et al., 2011); in contrast, word
n-gram models can be trained with a single counting pass that takes no more than a few hours
even for gigaword training sets. In addition, evaluating a single word probability requires at most
a few floating-point operations for word n-gram models, while neural network language models
and Model M may require thousands or even millions of operations. Consequently, word n-gram
models are still the technology of choice for most real-world applications.

In this paper, we investigate whether it is possible to develop a language model with similar
performance as an advanced language model that is almost as fast as a word n-gram model in both
training and usage. In particular, we attempt to approximate Model M using an ensemble of class-
based back-off n-gram models. We show that our model, Model M Lite, is only slightly larger than
a comparable Model M, and can be trained in a single counting pass just like a word n-gram model.
A single probability lookup can be implemented via several conventional n-gram model lookups.
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In Model M, a word probability is decomposed into the product of a class prediction probability
and a word prediction probability; e.g., for a trigram model, we have

p(wi|wi−2wi−1) = p(ci|wi−2wi−1)× p(wi|wi−2wi−1ci) (1)

where we assume each word wi belongs to only a single class ci. The word prediction model is an
exponential n-gram model, and can be straightforwardly approximated with a conventional n-gram
model. However, the class prediction model contains features conditioning on both word histories
and class histories, and cannot easily be expressed with a single n-gram model. The difficulty in
approximating this model with a single back-off n-gram model is that there can be multiple plausible
back-off distributions for a single history. For example, we may smooth the trigram probability
p(ci|wi−2wi−1) by backing off to the bigram probability p(ci|wi−1):

psmooth(ci|wi−2wi−1) = pprimary(ci|wi−2wi−1) + α(wi−2wi−1)psmooth(ci|wi−1) (2)

Alternatively, we can back off to a class n-gram history p(ci|ci−2ci−1):

psmooth(ci|wi−2wi−1) = pprimary(ci|wi−2wi−1) + α(wi−2wi−1)psmooth(ci|ci−2ci−1) (3)

One natural solution is to back off to both histories with some weight:

psmooth(ci|wi−2wi−1) = pprimary(ci|wi−2wi−1)+αw(wi−2wi−1)psmooth(ci|wi−1)+
αc(wi−2wi−1)psmooth(ci|ci−2ci−1) (4)

If we do this at every possible branch point, this can be viewed as interpolating an ensemble of
conventional n-gram models, one for each possible back-off path. Then, the challenge is whether
we can intelligently determine the relative magnitudes of αw(·) and αc(·), i.e., for each history,
to dynamically determine which back-off paths should be weighted the most. We evaluate several
schemes for determining weights, and show that a simple scheme can be quite effective.

The overview of this paper is as follows: In Section 2, we describe Model M in more detail
and in Section 3, we describe our new model. Section 4 presents results of speech recognition
experiments on Wall Street Journal data. We find that Model M Lite retains the bulk of the word-
error rate gains of Model M over word n-gram models, translating to absolute gains of up to 2%. In
Section 5, we discuss related work and we present conclusions in Section 6.

2 Model M

2.1 Model Definition

Model M is a class-based n-gram model composed of two separate exponential models, one for
predicting classes and one for predicting words. An exponential model pΛ(y|x) contains a set of
features {fj(x, y)} and equal number of parameters Λ = {λj} where

pΛ(y|x) =
exp(

∑
j λjfj(x, y))
ZΛ(x)

(5)

and where the normalization term ZΛ(x) is defined as

ZΛ(x) =
∑
y′

exp(
∑
j

λjfj(x, y′)) (6)
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In an exponential language model, we take y to be the current word (wi) and x to be a number of
preceding words (e.g., wi−2wi−1).

A word n-gram model can be expressed as an exponential model in the following manner:
Let fω(·) denote a binary n-gram feature such that fω(x, y) = 1 iff xy “ends” in the n-gram ω.
Then, an exponential n-gram model has a feature fω(·) for each m-gram ω occurring in the training
data for m ≤ n. Such models describe the same space of conditional models as conventional n-
gram models do, and can be thought of as an alternate parameterization of the same model space
(Chen and Rosenfeld, 2000). One advantage of this representation is that smoothing can be done
simply and effectively via `1 + `22 regularization (Kazama and Tsujii, 2003; Chen, 2008) where the
parameters Λ are chosen to optimize

O`1+`22
(Λ) = log PPtrn +

α

D

∑
j

|λj |+
1

2σ2D

∑
j

λ2
j (7)

where PPtrn is the training set perplexity, D is the number of words in the training set, and α and σ
are regularization hyperparameters. Unpruned n-gram models regularized this way have about the
same performance as conventional n-gram models smoothed with modified Kneser-Ney smoothing
(Chen and Goodman, 1998).

Let png(y|ω) denote an exponential n-gram model and let png(y|ω1, ω2) denote a model con-
taining all features in png(y|ω1) and png(y|ω2). If we assume that every word w is mapped to a
single word class, the trigram version of Model M is defined as

pM (wi|wi−2wi−1) ≡ png(ci|ci−2ci−1, wi−2wi−1)× png(wi|wi−2wi−1ci) (8)

where ci is the word class of word wi.
Word classes can be automatically induced from text. The most popular technique is bigram

mutual information clustering, where classes are selected to maximize the mutual information be-
tween adjacent classes (Brown et al., 1992). More recently, there has been work to tailor class
induction to Model M. With these customized classes, Model M has achieved word-error rate gains
of up to 3% absolute as compared to a Katz-smoothed trigram model (Chen and Chu, 2010).

2.2 Computational Cost of Training

General exponential model training is fairly expensive. As there is no closed-form solution to
Equation (7), the parameters Λ are estimated in an iterative fashion. In each iteration, one typically
needs to compute the expectation of each feature

EpΛ [fj ] =
∑
x,y

p̃(x)pΛ(y|x)fj(x, y) (9)

from which it is straightforward to compute the gradient, where p̃(x) is proportional to the frequency
of the history x in the training data. For each unigram feature, the sum in Equation (9) includes a
nonzero term for every history x in the training data. Thus, if there is a unigram feature for every
word in a vocabulary of size V , then V expectations will need to be updated for every training
event, where V may be tens of thousands or more. Depending on the model structure, there may
be optimizations for the expectation computation (Lafferty and Suhm, 1995; Wu and Khudanpur,
2000). For pure exponential n-gram models such as the word prediction model in Model M, the
expectation computation is quite efficient. However, training the class prediction model requires
substantially more computation per event (Chen et al., 2010).
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In contrast, conventional n-gram models can be estimated by simply counting allm-grams up to
length n in the training set and then performing smoothing. This translates to a single pass through
the data, where only a few counts need to be updated for each event. Consequently, conventional
n-gram models can be trained orders of magnitude more quickly than Model M given the same
amount of data.

2.3 Computational Cost of Lookups

In this section, we discuss the cost of computing a single probability lookup for Model M. Pure
exponential n-gram models like the word prediction model can be converted into an equivalent
conventional n-gram model; thus, lookups are very fast. For the class prediction model, the number
of nonzero terms in the sum in Equation (5) is on the order of n for an n-gram model. However, the
normalization term ZΛ(x) computed in Equation (6) requires a sum over all word classes, of which
there are typically 100-500. Thus, a Model M lookup may cost an order of magnitude or more than
a conventional n-gram model lookup.

Unnormalized Model M has been developed to address this issue (Chen et al., 2010). In this
variant, the normalization term ZΛ(x) is omitted from Equation (5) and extra features are added to
the model in an attempt to approximate this term. As the model is unnormalized, it does not return
valid probabilities, but it is still suitable for use in applications such as speech recognition. Unnor-
malized Model M has been found to yield about the same word-error rate as the normalized version
and lookups are only a few times slower than those for conventional n-gram models. Training costs
for normalized and unnormalized Model M are about the same.

3 Model M Lite

As conventional n-gram models are fast to train and evaluate, we attempt to approximate Model
M using these models. As mentioned earlier, conventional n-gram models smoothed with modified
Kneser-Ney smoothing give around the same performance as exponential n-gram models, so we
can approximate the word prediction model of Model M using a single conventional n-gram model.

However, the class prediction model contains features from two different exponential n-gram
models. Specifically, it contains features from png(ci|wi−2wi−1) as well as from png(ci|ci−2ci−1),
which translates to n-gram features of the following forms:

wi−2wi−1ci, ci−2ci−1ci, wi−1ci, ci−1ci, ci (10)

Presumably, to approximate this model well, we need to develop a model that contains the same set
of n-gram features. The question then is how to best encompass this feature set within one or more
conventional n-gram models.

3.1 Smoothing

One important consideration is smoothing. Poor smoothing can have a substantial negative impact
on performance (e.g., up to 1% absolute in speech recognition word-error rate), so we require that
the conventional n-gram models we construct are regularized using state-of-the-art smoothing, i.e.,
modified Kneser-Ney (Chen and Goodman, 1998). We review modified Kneser-Ney smoothing
here as we will use these concepts in the description of our proposed model.

Interpolated smoothing algorithms for conventional n-gram models take the following form

psmooth(wi|wi−2wi−1) = pprimary(wi|wi−2wi−1) + α(wi−2wi−1)psmooth(wi|wi−1) (11)
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assuming a trigram model, where α(·) is a scaling factor that ensures that probabilities sum to 1.
Generally, we can write pprimary(wi|wi−2wi−1) as

pprimary(wi|wi−2wi−1) =
c(wi−2wi−1wi)−D(c(wi−2wi−1wi))∑

wi
c(wi−2wi−1wi)

(12)

where c(·) is the count of an n-gram in the training data and where D(0) = 0; i.e., we are assured
that pprimary(wi|wi−2wi−1) = 0 for unseen trigrams. That is, if a trigram wi−2wi−1wi occurs in
the training data, then the corresponding probability psmooth(wi|wi−2wi−1) is a discounted version
of its maximum likelihood estimate c(wi−2wi−1wi)P

wi
c(wi−2wi−1wi)

combined with a back-off term. If not, its

probability is estimated by scaling a lower-order probability estimate psmooth(wi|wi−1).
The key idea in Kneser-Ney smoothing and variants is that lower-order distributions are esti-

mated so as to approximately satisfy lower-order marginal constraints; e.g., we want the following
to hold for all bigrams wi−1wi:∑

wi−2

c(wi−2wi−1)psmooth(wi|wi−2wi−1) ≈ c(wi−1wi) (13)

This can be achieved if we estimate the bigram distribution pprimary(wi|wi−1) as follows:

pprimary(wi|wi−1) =
N1+({wi−2}wi−1wi)−D(·)∑

wi
N1+({wi−2}wi−1wi)

(14)

where
N1+({wi−2}wi−1wi) = |{wi−2 : c(wi−2wi−1wi) > 0}| (15)

and where D(·) is a discounting term. The unigram distribution pprimary(wi) can be defined analo-
gously. Intuitively, a lower-order probability pprimary(wi|wi−1) is trained using only a single count
from each unique n-gram of the form wi−2wi−1wi, rather than using all of the counts as in max-
imum likelihood estimation. Note that taking pprimary(wi|wi−1) to be a discounted version of its
maximum likelihood estimate will not result in the marginal constraints in Equation (13) being
satisfied.

In modified Kneser-Ney smoothing, the discounts D(·) in Equation (12) are parameterized as
follows:

D(c) =


0 if c = 0
D1 if c = 1
D2 if c = 2
D3+ if c ≥ 3

(16)

The discounts D1, D2, and D3+ can be estimated from the training data as

Y =
n1

n1 + 2n2

D1 = 1− 2Y
n2

n1

D2 = 2− 3Y
n3

n2

D3+ = 3− 4Y
n4

n3
(17)

where n1, n2, n3, and n4 are the number of n-grams with exactly 1, 2, 3, and 4 counts, respectively,
in the training data.
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Figure 1: Possible back-off paths, initial proposal.

3.2 Covering the Model M Feature Set

Our goal is to include all features of the forms listed in Equation (10) in one or more conventional n-
gram models. First, we introduce some notation. We generalize Equation (11) to arbitrary histories
and switch to class prediction instead of word prediction:

psmooth(ci|hi) = pprimary(ci|hi) + α(hi)psmooth(ci|h′i) (18)

In this case, we say that the history hi backs off to the history h′i and we write hi → h′i. For instance,
the back-off path in a conventional word trigram model can be written as wi−2wi−1 → wi−1 → ε
where ε is the empty history. Each back-off path defines an n-gram model.

Then, we wish to cover all of the histories corresponding to the features in Equation (10) using
one or more back-off paths. Intuitively, each back-off path should start with the most specific
history, i.e., wi−2wi−1, and end with the ε history. In addition, only some back-off relations seem
“sensible”; e.g., it does not make sense to back off from wi−2wi−1 directly to the ε history. In
particular, we consider only two types of back-off:

• Truncating a single position, e.g., wi−2wi−1 → wi−1 or ci−1 → ε.

• Generalizing a word history to the corresponding class history, e.g., wi−2wi−1 → ci−2ci−1.

We can describe the set of back-off paths that satisfy the preceding constraints using the graph
depicted in Figure 1. We propose combining all of the n-gram models described by the back-off
paths in the diagram. Intuitively, different back-off paths will be most effective depending on the
particular event, and it is likely that all of these back-off paths will be useful for at least some events.
To give another perspective, it is important to encompass all plausible back-off relationships in our
model, because these back-off relationships are all implicitly modeled within Model M.

However, we observe that Figure 1 is flawed. Specifically, we note that lower-order distributions
in Kneser-Ney smoothing are estimated in a manner that depends on the higher-order distribution.
As a consequence, while we have written that both wi−1 and ci−1 back off to ε, these histories
should back off to different versions of the ε history. To see this, we rewrite Equation (14) for the
back-off relations wi−1 → ε and ci−1 → ε, respectively:

p
(w)
primary(ci|ε) =

N1+({wi−1}ci)−D(·)∑
ci
N1+({wi−1}ci)

p
(c)
primary(ci|ε) =

N1+({ci−1}ci)−D(·)∑
ci
N1+({ci−1}ci)

(19)
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Figure 2: Possible back-off paths, corrected.

We denote the histories corresponding to these two equations as ε(w) and ε(c), respectively.
This phenomenon also occurs for the history ci−1 and the back-off relations wi−1 → ci−1 and

ci−2ci−1 → ci−1. The corresponding back-off equations are

p
(g)
primary(ci|ci−1) =

N1+({wi−1}ci−1ci)−D(·)∑
ci
N1+({wi−1}ci−1ci)

p
(t)
primary(ci|ci−1) =

N1+({ci−2}ci−1ci)−D(·)∑
ci
N1+({ci−2}ci−1ci)

(20)

We denote the histories corresponding to these two equations as c(g)
i−1 and c(t)

i−1, for generalization
and truncation, respectively. We display the corrected set of back-off paths for a trigram model in
Figure 2. More generally, all class histories of length m for m = 1, . . . , n− 2 need to be duplicated
in addition to the ε history.1

To recap, we can cover all of the features in Model M’s class prediction model (listed in Equa-
tion (10)) with a collection of n-gram models, one corresponding to each path in Figure 2. For a
trigram model, there are a total of three component models; more generally, there are n component
models for an n-gram model. In the next section, we discuss how we combine these models to
compute class prediction probabilities.

Note that we need not store a full back-off n-gram model for each component model. Instead,
we can store individual back-off distributions corresponding to each node in the graph in Figure 2.
This translates to storing the exact same set of features as in Model M’s class prediction model
except for the additional duplicated distributions for the ε history and for back-off class histories,
which are relatively small. As a result, our proposed model is only slightly larger than the corre-
sponding Model M, as will be shown in Section 4.2.

1We can ask whether the same back-off distribution ε(c) can be used for both c(g)
i−1 → ε(c) and c(t)i−1 → ε(c). In

both cases, the back-off distribution can be expressed with the second line in Equation (19), so it is correct to share this
back-off distribution.

7



3.3 Selecting Path Weights

In this section, we discuss how to combine the multiple component n-gram models to do class
prediction. The general framework we use is linear interpolation, so we need to assign weights to
each component n-gram that sum to 1. We can do this by assigning probabilities to the arcs in the
graph in Figure 2: If the sum of the arc probabilities leaving each node is 1, then the sum over path
probabilities will also be equal to 1. Instead of computing each full n-gram probability separately
and weighting each with the corresponding path probability, we can compute back-off probabilities
for each node in Figure 2 from leaves to root. For nodes with a single outgoing arc, we can use the
normal back-off formula given in Equation (18). For nodes with two back-off distributions, we can
use a formula similar to Equation (4)

psmooth(ci|hi) = pprimary(ci|hi) + α(hi)
[
α1(hi) psmooth(ci|h(1)

i ) + α2(hi) psmooth(ci|h(2)
i )

]
(21)

where α1(·) and α2(·) are weights (summing to 1) corresponding to each outgoing arc. For more
details, refer to Section 3.3.3.

3.3.1 Rating the Informativeness of Back-off Distributions

We wish to choose weights dynamically; i.e., the weights α1(·) and α2(·) should not be constant and
should instead depend on the current history. For example, sometimes a truncated back-off history
will be more informative and should be given a higher weight, and sometimes a generalized back-
off history will be more informative. Specifically, we would like to assign an “informativeness”
score to each back-off distribution and to compute weights as a simple function of these scores. We
choose to measure the informativeness of a conditional distribution using its entropy, i.e.,

H(ci|hi) ≡ −
∑
ci

psmooth(ci|hi) log psmooth(ci|hi) (22)

The entropy can be viewed as an estimate of the log perplexity of a distribution, assuming the
distribution is accurate. To optimize the perplexity of the overall model, it makes sense to give
higher weight to distributions with lower expected perplexity.

We speculate that overall performance is not very sensitive to how accurately the entropy is
computed. Consequently, instead of calculating entropies exactly, we use a primitive approximation
to simplify the algorithm. Instead of Equation (22), we take

H ′(ci|hi) ≡ −
∑

ci:c(hi,ci)>0

pprimary(ci|hi) log pprimary(ci|hi)− α(hi) logα(hi) + α(hi)H ′(ci|h′i)

(23)
This can be interpreted in the following way: for classes ci seen after the history hi in the train-
ing data, instead of summing the primary probability pprimary(ci|hi) and the back-off probability
α(hi)psmooth(ci|h′i) as in Equation (18), we pretend these probabilities belong to separate class to-
kens. Under this interpretation, H ′(ci|hi) is exactly the entropy of the distribution. For the nodes
with multiple back-off distributions, the value of H ′(ci|hi) will depend on which back-off distri-
bution is chosen. In this case, we choose the back-off distribution h(k)

i with the lowest value of
H ′(ci|h(k)

i ).

8



hi chi
(hi, ci) pback(ci|hi)

wi−2wi−1 c(wi−2wi−1ci) α1(hi)psmooth(ci|wi−1) + α2(hi)psmooth(ci|ci−2c
(g)
i−1)

wi−1 N1+({wi−2}wi−1ci) α1(hi)psmooth(ci|ε(w)) + α2(hi)psmooth(ci|c(g)
i−1)

ε(w) N1+({wi−1}ci) punif(ci)
ci−2c

(g)
i−1 N1+({wi−2wi−1}ci−2ci−1ci) psmooth(ci|c(t)

i−1)
c

(g)
i−1 N1+({wi−1}ci−1ci) psmooth(ci|ε(c))
c

(t)
i−1 N1+({ci−2}ci−1ci) psmooth(ci|ε(c))
ε(c) N1+({ci−1}ci) punif(ci)

Table 1: Algorithm summary; see Equation (25) and Equation (26).

3.3.2 Going From Entropies to Back-off Weights

In the last section, we described how to compute an entropy score H ′(ci|hi) for each history hi,
where hi takes on the forms given at the nodes in Figure 2. Then, given a particular class prediction,
we need to specify how to compute back-off weights (i.e., α1(·) and α2(·) in Equation (21)) given
the entropies of each back-off distribution.

Intuitively, the lower the entropy the higher the weight should be, and if the entropy of one
distribution is much lower than the other, the weight of that distribution should be nearly 1. We
propose the following simple scheme

α1(hi) =
e−βH′(ci|h

(1)
i )

e−βH′(ci|h
(1)
i ) + e−βH′(ci|h

(2)
i )

α2(hi) =
e−βH′(ci|h

(2)
i )

e−βH′(ci|h
(1)
i ) + e−βH′(ci|h

(2)
i )

(24)

where β is a hyperparameter to be tuned. The higher β is, the higher weight is given to back-off
distributions with lower entropies. Setting β =∞ corresponds to selecting the back-off distribution
with lower entropy with weight 1 and ignoring the other back-off distribution.

3.3.3 Algorithm Recap

We recap the entire algorithm here for the trigram case. For each node/history hi in Figure 2, we
have a smoothed distribution of the form

psmooth(ci|hi) = pprimary(ci|hi) + α(hi)pback(ci|hi) (25)

where pprimary(ci|hi) takes the form

pprimary(ci|hi) =
chi

(hi, ci)−D(chi
(hi, ci))∑

ci
chi

(hi, ci)
(26)

and where chi
(hi, ci) and pback(ci|hi) for each history are defined in Table 1. The distribution

punif(ci) is the uniform distribution

punif(ci) =
1
Vc

(27)
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where Vc is the number of word classes.
The values α(hi) are chosen to make each conditional distribution sum to 1 and can be computed

as

α(hi) =

∑
ci
D(chi

(hi, ci))∑
ci
chi

(hi, ci)
(28)

To compute α1(hi) and α2(hi), we first compute H ′(ci|hi) for all histories using Equation (23),
after which we can use Equation (24) to calculate these values.

For the discountsD1, D2, andD3+ in Equation (17), we estimate a different set of discounts for
each history hi in Figure 2. When computing n1, . . . , n4, we use regular n-gram counts c(·) rather
than Kneser-Ney-style counts N1+(·) for all distributions.

4 Experiments

4.1 Technical Details

In this section, we present perplexity and speech recognition word-error rates using the same Wall
Street Journal data sets and methodology as in (Chen and Chu, 2010). We randomly ordered sen-
tences taken from the 1993 CSR-III Text corpus; reserved 2.5k sentences (64k words) as the matched
development set; and selected training sets of 1k, 10k, 100k, and 900k sentences from the remaining
data, where a sentence has about 25.8 words on average. The largest training set contains a total of
about 23M words. The vocabulary contains about 21k words.

For the speech recognition experiments, we selected an acoustic development set of 977 sen-
tences (18.3k words) and an evaluation set of 2.4k sentences (46.9k words). The acoustic model is a
cross-word quinphone system built from 50h of Broadcast News data and it contains 2176 context-
dependent states and 50k Gaussians. The front end is a 13-dimensional PLP front end with cepstral
mean subtraction; each frame is spliced together with four preceding and four succeeding frames
and then LDA is performed to yield 40-dimensional feature vectors. We use lattice rescoring for the
language model evaluations, and choose the acoustic weight for each model to optimize the lattice
rescoring word-error rate of that model on the acoustic development set. We do a Powell search to
find the best weight with a granularity of 0.002.

The language model for lattice generation is created by building a modified Kneser-Ney word
trigram model on our largest WSJ training set; this model is then pruned to contain a total of about
350k n-grams. The word-error rate of the first-pass decoding is 27.7% and the oracle error rate of
the generated lattices is 9.6%.

4.2 Results

We evaluate the following baseline algorithms: word n-gram models smoothed with modified
Kneser-Ney smoothing (mKN) and with Katz smoothing (Katz, 1987); and Model M (mdM), both
the original and unnormalized versions. For Model M Lite, we evaluate the following variants:

• word back-off — This is a static interpolation scheme where at each branch point in Figure 2,
a weight of 1 is given to the truncation branch. For a trigram model, this translates to a single
n-gram model corresponding to the back-off path wi−2wi−1 → wi−1 → e(w).

• class back-off — This is a static interpolation scheme where at each branch point in Figure 2,
a weight of 1 is given to the generalization branch. For a trigram model, this translates to a
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training set (sentences)
algorithm 1k 10k 100k 900k

wd n-gram, Katz 6.099 5.344 4.764 4.328
wd n-gram, mKN 5.908 5.199 4.641 4.244
word back-off 5.875 5.140 4.558 4.190
class back-off 5.918 5.152 4.561 4.199
select 5.892 5.131 4.545 4.188
mix, β=0 5.838 5.089 4.527 4.180
mix, β=0.5 5.836 5.087 4.525 4.179
mix, β=1 5.837 5.087 4.525 4.179
mix, β=1.5 5.839 5.088 4.525 4.178
mix, β=2 5.842 5.090 4.525 4.179
mix, β=2.5 5.845 5.092 4.526 4.179
mix, β=3 5.848 5.095 4.527 4.179
mdM, norm’ed 5.790 5.040 4.490 4.166

Table 2: Trigram log perplexities (base e).

training set (sentences)
algorithm 1k 10k 100k 900k

wd n-gram, Katz 6.133 5.387 4.773 4.257
wd n-gram, mKN 5.905 5.178 4.580 4.106
word back-off 5.872 5.119 4.495 4.051
class back-off 5.962 5.187 4.571 4.135
select 5.904 5.117 4.488 4.056
mix, β=0 5.852 5.073 4.460 4.042
mix, β=0.5 5.845 5.065 4.453 4.035
mix, β=1 5.841 5.061 4.449 4.032
mix, β=1.5 5.841 5.060 4.448 4.030
mix, β=2 5.843 5.061 4.448 4.030
mix, β=2.5 5.845 5.063 4.448 4.030
mix, β=3 5.848 5.065 4.450 4.030
mdM, norm’ed 5.795 5.014 4.411 4.002

Table 3: 4-gram log perplexities (base e).

11



training set (sentences)
algorithm 1k 10k 100k 900k

wd n-gram, Katz 35.5 30.7 26.2 22.7
wd n-gram, mKN 34.5 30.5 26.1 22.6
word back-off 33.5 28.9 24.6 21.9
class back-off 33.6 28.7 24.5 21.9
select 33.5 28.6 24.3 21.8
mix, β=0 33.2 28.3 24.3 21.7
mix, β=0.5 33.2 28.2 24.2 21.7
mix, β=1 33.2 28.2 24.2 21.7
mix, β=1.5 33.2 28.2 24.2 21.7
mix, β=2 33.2 28.2 24.2 21.6
mix, β=2.5 33.2 28.2 24.3 21.6
mix, β=3 33.3 28.2 24.2 21.6
mdM, norm’ed 33.1 28.0 23.7 21.2
mdM, unnorm’ed 33.1 27.9 23.5 21.1

Table 4: Trigram word-error rates.

training set (sentences)
algorithm 1k 10k 100k 900k

wd n-gram, Katz 35.6 30.9 26.3 22.7
wd n-gram, mKN 34.5 30.4 25.7 22.3
word back-off 33.4 28.8 24.5 21.7
class back-off 33.9 29.0 24.9 22.3
select 33.5 28.6 24.3 21.5
mix, β=0 33.4 28.2 24.1 21.5
mix, β=0.5 33.3 28.2 23.9 21.3
mix, β=1 33.3 28.2 23.9 21.3
mix, β=1.5 33.3 28.2 23.9 21.2
mix, β=2 33.3 28.2 23.9 21.2
mix, β=2.5 33.3 28.2 23.9 21.2
mix, β=3 33.3 28.2 23.9 21.2
mdM, norm’ed 33.1 28.0 23.3 20.8
mdM, unnorm’ed 33.2 27.8 23.2 20.6

Table 5: 4-gram word-error rates.
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single n-gram model corresponding to the back-off path wi−2wi−1 → ci−2c
(g)
i−1 → c

(t)
i−1 →

e(c).

• mix — This is the main variant of the algorithm as described in Section 3.3.2. We evaluate
several values of β, including β = 0 which corresponds to assigning a weight of 0.5 to each
branch at every branch point.

• select — The corresponds to mix with β = ∞; i.e., at each branch point, the back-off dis-
tribution with lower entropy is selected. For each prediction, only a single n-gram model is
selected, but the back-off path is chosen dynamically.

For Model M and Model M Lite, we use word classes induced on the given training set using the
algorithm from (Chen and Chu, 2010). For each training set size, we run classing using ten different
random initializations; reported log perplexities and word-error rates are an average over the ten
runs.

We present log perplexity results on the matched development set for 3-gram and 4-gram models
in Table 2 and Table 3, respectively. Perplexity numbers are not provided for unnormalized Model
M since this model does not return valid probabilities. Word-error rates from lattice rescoring for
3-gram and 4-gram models are displayed in Table 4 and Table 5, respectively.

First, we compare the performance of the variants of Model M Lite that select only a single back-
off path: word back-off, class back-off, and select. We look exclusively at word-error rate since this
is the measure we care most about. We see that select is generally the best of these variants, with
gains of up to 0.2% absolute as compared to the second-best variant in each condition. Thus, we
find a small but consistent gain from choosing a single back-off path dynamically using entropy as
compared to picking the path statically.

Next, we compare the performance of the select variant (picking a single back-off path) and
mix variant (interpolating all paths) of Model M Lite. For the mix variant, we pick the β value
with the best average log perplexity across all conditions on the matched development set, β =
1.5. However, performance does not seem to be very sensitive to the value of β. We see that
mix consistently outperforms select across all conditions, with gains from 0.1–0.4% absolute. As
compared to using fixed weights of 0.5 (i.e., β = 0), we achieve gains of up to 0.3% absolute by
varying weights dynamically. Thus, we find consistent gains from interpolating all back-off paths
rather than selecting a single one. In the remaining discussion, we assume that we are using the mix
variant of Model M Lite with β = 1.5.

In Figure 3, we display the absolute word-error rate gain of several algorithms as compared to
the modified Kneser-Ney word n-gram model baseline for 4-gram models. We see that the gains
for normalized and unnormalized Model M are the highest. However, we also see substantial gains
for Model M Lite, with gains as high as 2.2% absolute. As compared to Model M, Model M
Lite achieves 73% to 92% of the absolute word-error rate gain. Thus, Model M Lite achieves the
majority of the performance gain of Model M despite its simplicity.

To give some idea of the relative training cost of Model M Lite as compared to Model M,
we timed training on the largest training set with 4-gram models (excluding the time to induce
word classes). Model M took around 10.2k seconds to train, while Model M Lite took around 104
seconds on the same machine. In terms of model size, the number of features in the Model M was
around 43.8M, while the number of features in the Model M Lite was around 44.3M, an increase
of around 1%. Thus, Model M Lite is much faster to train and is only marginally larger than the
comparable Model M. We do not provide a comparison of lookup speed because we do not currently
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Figure 3: Absolute word-error rate gains over 4-gram modified Kneser-Ney word n-gram model.

have comparably optimized implementations of Model M and Model M Lite, but we anticipate that
Model M Lite should be around the same speed as unnormalized Model M (Chen et al., 2010).

5 Related Work

There has been a great deal of previous work with conventional class-based n-gram models, e.g.,
(Brown et al., 1992; Ney et al., 1994; Galescu and Ringger, 1999; Whittaker and Woodland, 2001;
Wang and Harper, 2002; Zitouni et al., 2003). Perhaps the most closely-related such model to
Model M Lite is one of the models described in (Goodman, 2001). This paper compares a variety
of class-based language models; the best performing individual model is called fullibmpredict and
has the following form for trigram models

p(cj |cj−2cj−1, wj−2wj−1) = λ p(cj |wj−2wj−1) + (1− λ) p(cj |cj−2cj−1)
p(wj |cj−2cj−1cj , wj−2wj−1) = µ p(wj |wj−2wj−1cj) + (1− µ) p(wj |cj−2cj−1cj) (29)

where each component model is a conventional n-gram model. While Model M Lite shares the
first term on the right with both models in Equation (29), the second term is different in the class
prediction model and absent in the word prediction model. Speech recognition word-error rate
results are reported for a 284M-word North American Business news training set using N -best list
rescoring. The best result for an individual class-based model is an 0.5% absolute reduction in
word-error rate as compared to a Katz-smoothed trigram model.

To our knowledge, the best previous word-error rate results from conventional class-based n-
gram models are from multi-class composite n-gram models (Yamamoto and Sagisaka, 1999; Ya-
mamoto et al., 2003). These are called composite models because frequent word sequences can be
concatenated into single units within the model. The term multi-class refers to choosing different
word clusterings depending on word position, rather than using a single clustering across all word
positions. In experiments on the ATR spoken language database, an increase in word accuracy of
2.2% absolute over a Katz-smoothed trigram model is reported. In contrast, the largest gain achieved
by Model M Lite over a Katz trigram model is 2.5% absolute, on the 10k-sentence training set.
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The use of nonlinear back-off paths as in Figure 2 has also been studied previously. Factored
language models and generalized parallel backoff (Bilmes and Kirchoff, 2003) describe a general
framework that encompasses both class-based language models and generalized back-off graphs.
In lattice-based language models (Dupont and Rosenfeld, 1997), a hierarchical word clustering is
used to construct a lattice of n-gram models of the form p(wj |cj−n+1 . . . cj−1) for different n-gram
orders and for classes at different levels in the class hierarchy. The overall model is a word n-
gram model where back-off occurs along the edges of the lattice. A perplexity reduction of 6%
is achieved with a 2.5M-word Switchboard training set over a conventional word trigram model.
A category/word varigram model (Blasig, 1999) is a class-based model similar to a word n-gram
model where back-off can be performed to arbitrary sequences of words and word classes. Using a
39M-word Wall Street Journal training set, a reduction of about 10% in perplexity and about 0.8%
absolute in word-error rate is achieved as compared to a baseline word varigram model (Kneser,
1996). In generalized language models (Pickhardt et al., 2014), a word n-gram model is modified
to allow back-off to both regular and skip n-gram models.

There has also been much work on the dynamic selection of interpolation weights, e.g., (Wein-
traub et al., 1995; Iyer et al., 1997; Liu et al., 2008). The most relevant work to ours is perhaps
(Hsu, 2007). In this paper, the weight of a history h is taken to be

λi(h) =
exp(fi(h) · θ + γi)∑
j exp(fj(h) · θ + γj)

(30)

where fi(h) are manually-selected feature functions and θ and γi are the parameters of the model.
Proposed features include the count of h and left and right branch counts. The interpolation scheme
in Equation (24) can be viewed as an instance of this type of interpolation, where f(h) is taken to
be the entropy of the associated distribution.

Several ways have been proposed to accelerate lookups for advanced language models such
as Model M and neural networks. As mentioned earlier, the original Model M can be approxi-
mated with an unnormalized version for fast lookups (Chen et al., 2010). Similarly, neural network
language models can be approximated using word n-gram models, though there is some hit in per-
formance (Deoras et al., 2012; Arısoy et al., 2014). However, model training remains slow for these
methods.

6 Discussion

While the word-error rate performance of word n-gram models has been surpassed, they remain
the most popular technology in real-world systems because they excel in many other respects. For
example, here are a number of ways in which they compare favorably to neural network language
models:

• Training speed — Word n-gram models can be trained orders of magnitude more quickly.

• Lookup speed — Word n-gram lookups are orders of magnitude less expensive.

• Model size — Neural network language models are often interpolated with word n-gram
models to achieve the best performance. In addition, word n-gram model pruning is well-
developed and effective (Stolcke, 1998).

• Hyperparameters that need to be tuned — For word n-gram models with modified Kneser-
Ney smoothing, the only hyperparameter that needs to be chosen is n (and this has only 3–4
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plausible values). In contrast, neural networks have many hyperparameters that take on a large
range of plausible values and which have a significant impact on performance, e.g., network
topology/size and training hyperparameters.

• Implementation cost — Training is substantially more complicated to implement with neural
networks. While lookups are straightforward to implement if speed is not an issue, it is
unclear how to make lookups fast with neural networks.

While Model M suffers from fewer issues, there are still several obstacles to its use:

• Training speed — Word n-gram models can be trained orders of magnitude more quickly.

• Lookup speed — Unnormalized Model M lookups can be within a factor of two in speed of
word n-gram model lookups (Chen et al., 2010) .

• Model size — While unpruned Model M’s are larger than their word n-gram model counter-
parts, Model M retains its word-error rate gains when pruned to the same number of param-
eters, over a wide range of operating points (Chen et al., 2011). In addition, Model M does
not need to be interpolated with a word n-gram model (as this generally does not improve
performance).

• Hyperparameters that need to be tuned — The number of word classes must be selected for
Model M, though performance is not very sensitive to this value.

• Implementation cost — Training is substantially more complicated to implement with Model
M. On the other hand, unnormalized lookups can be implemented simply using multiple
conventional n-gram model lookups.

In sum, while unnormalized Model M is only slightly worse than word n-gram models in several
respects, it still suffers in terms of training speed and training implementation complexity.

Model M Lite addresses these final two shortcomings. As it is composed of multiple n-gram
models, it can be trained only a few times slower than a single word n-gram model, and the training
code is relatively simple to implement. This excludes the time required to induce word classes,
which will generally be much larger. However, once a set of word classes are available, they can be
reused across multiple training runs. In addition, Model M Lite lookups should be about the same
speed as unnormalized Model M lookups, and Model M Lite introduces but a single hyperparameter
β which can just be set to the value 1.5. It remains to be seen whether Model M Lite has the same
satisfactory pruning behavior as Model M.

While Model M Lite sacrifices some of the performance gains of Model M, it still produces
substantial word-error rate gains over word n-gram models, gains of up to 2% absolute. Thus, we
argue that Model M Lite is a very compelling alternative to word n-gram models for real-life speech
recognition applications.

As compared to unnormalized Model M, the main benefit of Model M Lite is greatly reduced
training time at the cost of a little bit of performance. While training time may be of secondary
concern for some applications since this computation can be done off-line, there are still many
applications where training time is an important consideration. For example, there is utility in
being able to quickly customize a language model to a novel domain. To mention another potential
application, fast training makes it possible the use Model M Lite to help guide the search for good
word classes.

Finally, we note that while there have been a vast number of papers investigating conventional
class-based n-gram models, Model M Lite has achieved the best reported results in this area in
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terms of word-error rate, with gains of up to 2.5% absolute as compared to a Katz-smoothed trigram
model. We demonstrate that with careful design in terms of n-gram features, back-off, smoothing,
and dynamic interpolation, it is possible to rival the performance of advanced models such as Model
M and neural networks using only a compact combination of simple and fast n-gram models.
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