
RC24970 (W1004-019) April 6, 2010
Computer Science

IBM Research Report

Scaling Shrinkage-Based Language Models

Stanley F. Chen, Lidia Mangu, Bhuvana Ramabhadran, Ruhi Sarikaya,
Abhinav Sethy

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

Scaling Shrinkage-Based Language Models

Stanley F. Chen, Lidia Mangu, Bhuvana Ramabhadran, Ruhi Sarikaya, Abhinav Sethy
IBM T.J. Watson Research Center

P.O. Box 218, Yorktown Heights, NY 10598
{stanchen,mangu,bhuvana,sarikaya,asethy}@us.ibm.com

Abstract

In (Chen, 2009b), we show that a novel class-based language model, Model M, and the
method of regularized minimum discrimination information (rMDI) models outperform com-
parable methods on moderate amounts of Wall Street Journal data. Both of these methods are
motivated by the observation that shrinking the sum of parameter magnitudes in an exponen-
tial language model tends to improve performance (Chen, 2009a). In this paper, we investigate
whether these shrinkage-based techniques also perform well on larger training sets and on other
domains. First, we explain why good performance on large data sets is uncertain, by showing
that gains relative to a baseline n-gram model tend to decrease as training set size increases.
Next, we evaluate several methods for data/model combination with Model M and rMDI mod-
els on limited-scale domains, to uncover which techniques should work best on large domains.
We also show how to speed up Model M by using unnormalized exponential models. Finally,
we apply these methods on a variety of medium-to-large-scale domains covering several lan-
guages, and show that Model M consistently provides significant gains over existing language
models for state-of-the-art systems in both speech recognition and machine translation.

1 Introduction

In (Chen, 2009b), we proposed a novel class-based language model, Model M, that outperforms a
Katz-smoothed word trigram model by 28% in perplexity and 1.9% absolute in automatic speech
recognition (ASR) word-error rate; these are among the best results ever reported for a class-based
language model. In addition, we showed that for the task of domain adaptation, the method of
regularized minimum discrimination information (rMDI) modeling outperforms linear interpolation
by up to 0.7% absolute in word-error rate (WER). However, these experiments were restricted to
Wall Street Journal data with training sets less than 25 million words in length and were conducted
with a non-state-of-the-art acoustic model. While Wall Street Journal is the canonical test bed for
language modeling (LM) research, it is not representative of the data used in modern language
modeling applications, many of which use languages other than English. Furthermore, the use of
training sets of 1 billion words or more is not uncommon, e.g., (Brants et al., 2007).

In this paper, we investigate whether the gains of Model M and regularized minimum discrimi-
nation information models scale to larger data sets, other domains and languages, and other appli-
cations, specifically, machine translation (MT). One particular concern is that both Model M and
rMDI models were motivated as ways to shrink a word n-gram model. That is, when training and
test data are drawn from the same distribution, it has been found for many types of exponential
language models that

log PPtest ≈ log PPtrain +
γ

D

∑
i

|λ̃i| (1)

1

where PPtest and PPtrain denote test and training set perplexity; D is the number of words in the
training data; λ̃i are regularized (i.e., smoothed) estimates of the model parameters; and γ is a
constant independent of domain, training set size, and model type (Chen, 2009a; Chen, 2008).
Thus, one can improve test performance by shrinking the parameter sum

∑
i |λ̃i|, and both Model

M and rMDI models are designed to improve upon word n-gram models in this way. However, as
training set size increases, the last term in eq. (1) tends to grow smaller, which suggests the gain
to be had by shrinking parameter values will also decrease. Thus, it is uncertain whether Model M
and rMDI models will retain their performance improvements over word n-gram models on larger
training corpora.

The outline of this paper is as follows: In Section 2, we review Model M and rMDI models.
In Section 3, we elaborate on why performance gains decrease as training sets grow, and show
how gains vary for some actual models. In Section 4, we examine the task of model combination
when using Model M and rMDI models, as this is a key issue when tackling large-scale domains.
In Section 5, we discuss the run-time speed and training time of these models, and show how
Model M can be accelerated with no loss in performance by using an unnormalized version of this
model. In Section 6, we apply these methods to a variety of medium-to-large-scale tasks: English
voicemail transcription; English Broadcast News transcription; GALE Arabic transcription; and
Arabic/English and Spanish/English machine translation. Finally, we present some conclusions in
Section 7.

2 Background

In this section, we review Model M and rMDI models as well as the results for performance predic-
tion for exponential language models given in (Chen, 2009a; Chen, 2008). An exponential model
pΛ(y|x) is a model with a set of features {fi(x, y)} and equal number of parameters Λ = {λi}
where

pΛ(y|x) =
exp(

∑
i λifi(x, y))∑

y′ exp(
∑

i λifi(x, y′))
(2)

Remarkably, eq. (1) holds for many exponential language models including Model M and rMDI
models; the relationship is strongest if the Λ̃ = {λ̃i} are estimated using `1 + `2

2 regulariza-
tion (Kazama and Tsujii, 2003); i.e., parameters are chosen to optimize

O`1+`22
(Λ) = log PPtrain +

α

D

∑
i

|λi|+
1

2σ2D

∑
i

λ2
i (3)

for some α and σ. For a data set D = (x1, y1), . . . , (xD, yD), log perplexity (or cross-entropy)
can be computed as − 1

D

∑D
j=1 log pΛ(yj |xj). When using natural logs in eq. (1) and taking (α =

0.5, σ2 = 6), the constant γ = 0.938 yields a mean error equivalent to a few percent in perplexity
over the models evaluated in (Chen, 2008). These values of α and σ also yield good test set perfor-
mance over a wide variety of training sets. Thus, the right-hand side of eq. (1) is a faithful proxy for
test set perplexity. In practice, we have found that improving this proxy score for a model leads not
only to improvements in test set perplexity, but in speech recognition word-error rate as well.

It follows that if one can shrink the “size” of a model (proportional to
∑

i |λi|) while not dam-
aging training set performance, test set performance should improve. In (Chen, 2009b), we use
this reasoning to motivate Model M and rMDI models, two types of exponential language models.
Model M is a class-based n-gram model that can be viewed as the result of shrinking an exponential

2

word n-gram model using word classes. If we assume each word w is mapped to a single class
c(w), we can write

p(w1 · · ·wl) =
l+1∏
j=1

p(cj |c1 · · · cj−1, w1 · · ·wj−1)×
l∏

j=1

p(wj |c1 · · · cj , w1 · · ·wj−1) (4)

where cl+1 is the end-of-sentence token. Let fθ denote a binary n-gram feature such that fθ(x, y) =
1 iff xy “ends” in the n-gram θ. Let png(y|θ) denote an exponential n-gram model, where we have
a feature fθ′ for each suffix θ′ of each θy occurring in the training set. For example, the model
png(wj |wj−1cj) has a feature fθ for each n-gram θ in the training set of the form wj , cjwj , or
wj−1cjwj . Let png(y|θ1, θ2) denote a model containing all features in png(y|θ1) and png(y|θ2).
Then, we can define (the trigram version of) Model M as

p(cj |c1 · · · cj−1, w1 · · ·wj−1) ≡ png(cj |cj−2cj−1, wj−2wj−1)
p(wj |c1 · · · cj , w1 · · ·wj−1) ≡ png(wj |wj−2wj−1cj) (5)

Regularized minimum discrimination information (rMDI) models can be viewed as the result
of shrinking an exponential model using a prior distribution. Minimum discrimination information
(MDI) models (Della Pietra et al., 1992) have the form

pΛ(y|x) =
q(y|x) exp(

∑
i λifi(x, y))∑

y′ q(y′|x) exp(
∑

i λifi(x, y′))
(6)

for some prior distribution q(y|x). While regularization is not used in (Della Pietra et al., 1992), we
found in (Chen, 2009a) that when regularizing pΛ(y|x) in the way described earlier, eq. (1) holds
for these models if q(y|x) is ignored in computing model size (assuming q(y|x) is estimated on
an independent training corpus). Regularized MDI models are well-suited to the task of domain
adaptation, where one has a test set and small training set from one domain, and a large training
set from a different domain. One can build a language model on the outside domain, and use this
model as the prior when building a model on the in-domain data. While exponential models of any
form can be used in eq. (6), (Chen, 2009b) evaluated the use of exponential word n-gram models,
i.e., models of the form png(wj |wj−2wj−1) (for trigrams), and found good performance relative to
linear interpolation and count merging on small data sets. In this paper, we also evaluate a variant of
rMDI, cascaded rMDI, that can be used to combine an arbitrary number of training corpora rather
than just two. In this method, one orders the available corpora from most “out-of-domain” to most
“in-domain” and applies the rMDI technique repeatedly. That is, one first builds a model on the
most out-of-domain corpus and uses this as a prior when building a model on the next most out-
of-domain corpus. The resulting model is then used as the prior when training a model on the next
most out-of-domain corpus, etc.

3 Analyzing How Models Scale

In this section, we discuss why it’s important to study how models scale with training set size,
i.e., why good performance on small data sets often does not carry over to large ones. One obvious
reason to worry about this issue is that many algorithms in the literature have been shown not to scale
well. Here, we show how to explain this phenomenon for many types of models by using eq. (1),
and study how this effect affects Model M and rMDI models by plotting relative performances over
a variety of training set sizes.

3

 0

 1

 2

 3

 4

 5

 6

 7

10M1M100k10k
na

ts

training set size (words)

actual log PPtestpredicted log PPtestlog PPtrain
model size

Figure 1: Predicted and actual log PPtest, log PPtrain, and model size (γ
D

∑
i |λ̃i|) for word trigram

models built on varying amounts of WSJ data. A nat is a “natural” bit, or log2 e regular bits.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

10M1M100k10k

ga
in

 in
 lo

g
PP

te
st

 (n
at

s)

training set size (words)

model M, 4g
model M, 3g
model M, 2g

rMDI, 4g
rMDI, 3g
rMDI, 2g

Figure 2: Gains in log PPtest for Model M and rMDI models as compared to a word n-gram baseline,
for bigram, trigram, and 4-gram models built on varying amounts of WSJ data. For rMDI, the out-
of-domain corpus is Broadcast News text and is the same length as the in-domain WSJ corpus.

If we define the size of a model pΛ to be γ
D

∑
i |λ̃i|, eq. (1) tells us that test performance (in

log PP) is approximately equal to the sum of training performance (in log PP) and model size.
In Figure 1, we graph these quantities over varying amounts of training data (from 100 to 900k
sentences) for an exponential word trigram model built on Wall Street Journal (WSJ) data with a
21k word vocabulary. As with all other models discussed in this paper, we use `1 +`2

2 regularization
with (α = 0.5, σ2 = 6). While the sum

∑
i |λ̃i| grows with more data, it grows slower than D,

so the overall model size tends to decrease as we go to the right. Unintuitively, training perplexity
tends to increase as training set size increases. We can explain this by noting that with more training
data, the model cannot overfit the data as much.

Because Model M and rMDI models achieve their performance improvements over n-gram
models by shrinking model size, it seems likely that if n-gram model sizes decrease, so will the
shrinkage gain. In the limit of infinite data, we expect the size of a trigram model, say, to go to
zero and hence expect no improvement from the corresponding Model M or rMDI models. These
models condition their predictions on exactly two words of history, so they can do no better than

4

an “ideal” trigram model. Hence, the issue is not whether Model M and rMDI model gains will
disappear as training set size grows, but when.

In Figure 2, we display gain in log PPtest relative to a word n-gram model for Model M and rMDI
models for n ∈ {2, 3, 4}. For Model M, we build 150 word classes using the algorithm of (Brown
et al., 1992) on our largest training set and use these classes in all runs. For the rMDI models, we
use exponential n-gram models and combine the in-domain WSJ training set with an out-of-domain
Broadcast News training set of equal length (in sentences). As predicted, gains generally decrease
as the training set expands. Similarly, gains are smaller for smaller n since n-gram model sizes
shrink as n shrinks.1

At the right edge of the graph, the gains for most algorithms are 0.03 nats or less, where a nat
is a “natural” bit, or log2 e regular bits. Each 0.01 nat difference corresponds to about 1% in PP.
However, the gain for 4-gram Model M is 0.08 nats, which translates to a 1.4% absolute reduction
in word-error rate (22.2% ⇒ 20.8%) using the ASR setup described in Section 4.1. While gain is
dropping as training set size increases, Model M still appears promising for data sets substantially
larger than 900k sentences. Interestingly, while the gain from Model M over a word n-gram model
is only about 3% in PP for a bigram model on the largest training set, the gain in WER is still
0.6% absolute (25.7% ⇒ 25.1%), so it is possible that small PP gains for Model M still translate
to significant WER gains. In Section 6, we present experiments on larger data sets and see whether
these predictions hold true.

4 Scaling Model Combination

For large-scale domains, one typically has language model training data from multiple sources; for
example, the IBM GALE Arabic ASR system uses 16 separate corpora. Furthermore, these corpora
generally differ in relevance and amount, and aggregating the data into a single corpus may not
work best. Thus, a central issue in handling large domains is how to best combine multiple data
sets or models. In this section, we attempt to discover the best methods for combining Model M
models and to characterize when rMDI modeling can improve model combination performance. We
use small and medium-sized data sets so we can evaluate a large number of methods under a large
number of conditions, and attempt to predict performance on large tasks via extrapolation. We use
these findings to inform which algorithms to assess in the large-scale experiments in Section 6.

The best way to combine data or models will depend on the relationship between the training
and test corpora, so we investigate two different scenarios. In Section 4.1, we consider a typical
domain adaptation task where we have a modest amount of training data from the same domain
as the test data, and equal or larger amounts of out-of-domain data. In Section 4.2, we consider a
model combination task where we have many corpora from similar domains as the test data.

4.1 Domain Adaptation

These ASR experiments are an expanded version of the domain adaptation experiments in (Chen,
2009b); here, we consider more corpora, larger data sets, and more algorithms. The acoustic model
is a cross-word quinphone system built from 50h of Broadcast News data and contains 2176 context-
dependent states and 50k Gaussians. The front end is a 13-dimensional PLP front end with cepstral
mean subtraction; each frame is spliced together with four preceding and four succeeding frames

1In addition to shrinking model size, another way to improve test performance is to improve training set performance.
One way to do this is to increase the order of an n-gram model. Up to some limit, gains grow as training set size increases,
as the training set performance of a lower-order model saturates before that of a higher-order one.

5

in-domain (WSJ) training set (sents.)
1k 10k 100k 900k

word n-gram models
WSJ only

KN n-gram 34.5% 30.4% 26.1% 22.6%
exp. n-gram 34.6% 30.3% 25.7% 22.5%

WSJ and BN, 1:1 ratio
interp 34.3% 30.0% 25.4% 22.3%
merge 34.1% 29.6% 25.0% 22.1%
rMDI 34.0% 29.6% 25.1% 22.1%
merge/rMDI 34.0% 29.6% 25.1% 22.1%

WSJ and BN, 1:3 ratio
interp 33.9% 29.6% 25.1%
merge 33.5% 29.3% 25.1%
rMDI 33.4% 29.0% 24.7%
merge/rMDI 33.5% 28.9% 24.6%

WSJ and BN and SWB, 1:1:1 ratio
interp 34.3% 30.0% 25.4% 22.3%
merge 33.8% 29.6% 25.5% 22.2%
casc. rMDI 33.9% 29.5% 25.1% 22.1%
merge+rMDI 33.8% 29.5% 25.1% 22.2%

WSJ and BN and SWB, 1:3:10 ratio
interp 33.8% 29.7% 25.0%
merge 33.3% 29.3% 25.2%
casc. rMDI 33.1% 28.7% 24.6%
merge+rMDI 33.1% 28.8% 24.7%

Model M
WSJ only

Model M 35.3% 29.1% 24.2% 21.5%
WSJ and BN, 1:1 ratio

interp (WSJ/BN cl.) 34.9% 28.4% 23.9% 21.2%
interp (WSJ/WSJ cl.) 33.9% 28.3% 23.9% 21.2%
merge 33.9% 28.2% 23.9% 21.2%
rMDI 34.8% 28.6% 23.8% 21.2%
merge/rMDI 34.3% 28.6% 23.9% 21.3%

WSJ and BN, 1:3 ratio
interp (WSJ/BN cl.) 34.0% 27.8% 23.6%
interp (WSJ/WSJ cl.) 32.8% 27.6% 23.8%
merge 33.5% 27.6% 23.4%
rMDI 34.3% 28.1% 23.7%
merge/rMDI 33.9% 27.9% 23.6%

Table 1: Word-error rates for various methods for domain adaptation.

6

and then LDA is performed to yield 40-dimensional feature vectors. We use a 47k-word WSJ test set
and in-domain WSJ training sets of various sizes. For the out-of-domain data, we consider the cases
where only Broadcast News (BN) data is available and where both BN and Switchboard (SWB)
data are available, and assume the length of each out-of-domain corpus (in sentences) is a particular
multiple of the length of the in-domain corpus, either 1, ∼3, or ∼10.

To evaluate our language models, we use lattice rescoring. We generate lattices on both our
development and evaluation data sets using the LattAIX decoder (Saon et al., 2005) in the Attila
speech recognition system (Soltau et al., 2005). The language model for lattice generation is created
by building a modified Kneser-Ney-smoothed word trigram model on our largest WSJ training set;
this model is pruned to contain a total of 350k n-grams using the algorithm of Stolcke (1998). We
choose the acoustic weight for each model to optimize word-error rate on the development set; we
do a Powell search to find the best weight with a granularity of 0.002 (unlike in our previous work
where we used a granularity of 0.005).

We compare the techniques of linear interpolation, count merging, and rMDI modeling. In lin-
ear interpolation, separate language models are built on each corpus and linearly interpolated, with
interpolation weights being optimized on a held-out set (Jelinek et al., 1991). In count merging, the
component corpora are concatenated into a single corpus, and a single language model is built on
the merged data set. Count merging has been motivated as an instance of MAP adaptation (Fed-
erico, 1996; Masataki et al., 1997). Optionally, a component corpus may be replicated multiple
times to weight the data more; we do not consider this option here for simplicity. Unlike in linear
interpolation where each model is assigned a fixed weight independent of history for each word
prediction, count merging can be viewed as assigning a weight proportional to the history count of
each model. In contrast, rMDI modeling can be viewed as backing off from the in-domain model to
the out-of-domain model.

In Table 1, we display our ASR WER results. The top part of the table corresponds to word
n-gram models, while the bottom part corresponds to Model M. Each column represents a different
in-domain training set size. Each subsection of the table corresponds to using a different amount of
out-of-domain data. For example, the WSJ and BN and SWB, 1:3:10 ratio section corresponds to
using a BN corpus three times larger than the in-domain data and a SWB corpus ten times larger
than the in-domain data. All of the word n-gram models are exponential n-gram models except for
the first row, which corresponds to a conventional word n-gram model with modified Kneser-Ney
smoothing (Chen and Goodman, 1998). We use the trigram versions of each model.

The algorithm merge/rMDI corresponds to using count merging to merge the in-domain and
out-of-domain corpora into one corpus and then using rMDI to combine the in-domain and merged
corpus. The algorithm merge+rMDI corresponds to using count merging to merge the two out-
of-domain corpora into one corpus and then using rMDI to combine the in-domain and merged
out-of-domain corpus. The cascaded rMDI method amounts to using rMDI to repeatedly do 2-way
model combination; i.e., we first use rMDI to combine the BN and SWB data (with the SWB data
being the out-of-domain corpus), and then use this model as the prior when training on the WSJ
data.

Unlike in Section 3, we induce word classes on the given training set(s), rather than always using
word classes from the largest training set. This is why Model M performs poorly on the smallest
training set. We note that it is straightforward to combine rMDI domain adaptation with Model M;
one can simply do rMDI domain adaptation separately for each of the two component models given
in eq. (5), as long as the same word classes are used everywhere.

When doing domain adaptation, one must select which word classes are used with each training
corpus. In the interp (WSJ/WSJ cl.) runs, we use classes induced from the in-domain training set for

7

word n-gram models
PP WER

interp+, rMDI 180.8 14.3%
interp, rMDI 181.2 14.4%
interp+, exp. 184.9 14.4%
merge, exp. 188.4 14.5%
interp, KN 190.6 14.5%
interp, exp. 194.0 14.6%
merge, KN 194.2 14.6%
casc. rMDI 210.1 14.8%

Model M
PP WER

interp+, rMDI 169.3 13.7%
interp+ 169.4 13.6%
interp, rMDI 170.1 13.7%
merge 175.0 13.8%
interp 175.3 13.7%
casc. rMDI 203.3 14.2%

Table 2: Word-error rates for various methods for model combination.

all corpora. In the interp (WSJ/BN cl.) runs, we induce the word classes used for each corpus from
that corpus. For merge, we induce classes on the merged corpus, and for rMDI, we induce classes
on the in-domain training set.

For word n-gram models, the rMDI methods generally perform best or near best in all con-
ditions, where we do not see appreciable differences between rMDI and merge/rMDI or between
cascaded rMDI and merge+rMDI. While WER gains for rMDI over interpolation can be as large as
1% absolute (10k sentence in-domain data, 1:3:10 ratio), the difference between techniques when
using 900k sentences of in-domain data is much smaller. Intuitively, the backoff-like behavior of
rMDI should be well-suited to domain adaptation, as it seems reasonable that in-domain counts
should take priority over out-of-domain counts, when present.2

Overall, Model M outperforms word n-gram models for all of the training sets except the small-
est, and gains from domain adaptation are comparable to those for word n-gram models. However,
with Model M, rMDI does not perform particularly well, and no one algorithm dominates the others.
For the 900k-sentence in-domain training set, there is no significant difference between algorithms.
In summary, for larger training sets, we hypothesize that when combining word n-gram models
for domain adaptation, rMDI may yield small gains over other methods; for Model M, we predict
that all methods will perform about equally. Domain adaptation experiments on larger corpora are
presented in Section 6.1.

4.2 Model Combination

In these experiments, we use the same data sets as in the English Broadcast News task described
in Section 6.2, except we subsample each training set to 1

10 th its size and build trigram versions of
each model instead of 4-gram models. There are a total of six training corpora ranging in size from
170k words to 14.7M words after subsampling; each contains Broadcast News data of some sort.
Thus, this task is qualitatively different from our domain adaptation task, where some corpora are
clearly in-domain and others are not. As in the previous section, we compare linear interpolation,
count merging, and (cascaded) rMDI modeling, for combining both word n-gram models and Model
M. We consider both exponential n-gram models and conventional n-gram models smoothed with
modified Kneser-Ney smoothing. Cascaded rMDI requires that corpora be ordered from most out-
of-domain to most in-domain. To do this, we build n-gram models on each corpus and compute the

2This assumes that the in-domain data really is in-domain and the out-of-domain is not. In contrast, if the “out-of-
domain” data is actually in-domain, we would expect that using count merging to merge the corpora would do best.

8

training set (sents.)
1k 10k 100k 900k

normalized 31.0% 27.1% 23.8% 21.5%
unnorm., unreg. hist. 30.8% 26.9% 23.7% 21.3%
unnorm., reg. hist. 30.9% 26.9% 23.7% 21.5%
unnorm., no hist. 30.9% 27.0% 23.9% 21.5%

Table 3: Word-error rates for normalized and unnormalized versions of Model M. For unnormalized
models, we evaluate using unregularized history (or normalization) features, regularized history
features, and no history features at all. Experiments are for the trigram version of Model M using
150 word classes on WSJ data.

perplexity of an in-domain held-out set to guide us.
One unappealing aspect of linear interpolation is that when one of the component models has

no counts for a particular history (while the others do), it still gets its full prediction weight. We can
attempt to improve prediction in this situation by combining each component model with a “general”
model built on all of the training data combined, i.e., the count-merged model. This is analogous to
the technique used in topic-based language modeling of combining each topic-specific model with
a topic-independent model, e.g., (Seymore and Rosenfeld, 1997). We consider two different ways
of combining each corpus-specific model with the general model: linear interpolation and rMDI
modeling. With linear interpolation, interpolating each component model with the general model
is equivalent to just adding the general model into the overall interpolation. In rMDI modeling, we
use the general model as the prior when training each corpus-specific model.

In Table 2, we display development set PP and test set WER for a variety of model combination
algorithms applied to both word n-gram models and Model M. The notation interp+ refers to doing
interpolation where the general/count-merged model is included in the mix; exp. means exponential
n-gram models whereas KN refers to conventional n-gram models; and rMDI (with interpolation)
refers to training each corpus-specific model using the general model as a prior. In each subtable,
algorithms are ordered in terms of increasing PP on the development set.

The most popular model combination techniques are linear interpolation and count merging
with conventional n-gram models, yielding WER’s of 14.5% and 14.6%, respectively. The algo-
rithm yielding the best performance on the development set is interp+, rMDI, giving a WER of
14.3% for word n-gram models and 13.7% for Model M. However, a WER of 13.7% can also be
achieved through simple linear interpolation with Model M. In summary, we speculate that for large
training sets when using word n-gram models, small gains over simple interpolation may be possi-
ble with interp+, rMDI, but at the cost of a significantly larger model. With Model M, simple linear
interpolation is the easiest to implement and performs as well as any other method.3 We note that
cascaded rMDI performs by far the worst, probably because model combination is a very different
task than domain adaptation, the task which rMDI is tailored for. In Section 6.2, we present results
on the full-scale Broadcast News task.

3One practical question with interpolation is that when one has data from two very similar sources, when should these
corpora be merged into one? If the corpora are identical in nature, we expect merging should help. To give one data
point, we compared combining two 100k-sentence WSJ training sets using count merging and linear interpolation, and
this yielded WER’s of 24.7% and 24.9%, respectively.

9

5 Speeding Things Up

In this section, we discuss how model training and probability evaluation can be accelerated through
the use of unnormalized models, which can perform as well as or better than normalized mod-
els (Lebanon and Lafferty, 2001). An unnormalized model is defined just as in eq. (2) except
without an explicit normalization term:

pΛ(y|x) = exp(
∑

i

λifi(x, y)) (7)

For probability computation, unnormalized models can be much faster since there is no need to
compute the normalizer ZΛ(x) =

∑
y′ exp(

∑
i λifi(x, y′)), which can involve computing the prob-

ability of every token in the vocabulary. However, for exponential n-gram models, the number of
distinct ZΛ(x) is equal to the number of unique n-gram histories in the training data, so all of these
values can be precomputed.4 While most of the models discussed in this paper are exponential
n-gram models, the class prediction model given in eq. (5) for Model M contains the features from
two exponential n-gram models, and this optimization does not apply.

To train an unnormalized model, instead of optimizing the objective function given by eq. (3),
one adds an additional penalty term 1

D

∑
j(

∑
y pΛ(y|xj) − 1). This corresponds to using the ex-

tended Kullback-Leibler divergence rather than the conventional Kullback-Leibler divergence be-
tween the model and the training data. (Notice that this penalty term is zero for normalized models.)
To optimize this objective function, one can use iterative scaling exactly as before: the expectation
computation and parameter updates are the same as for normalized models.

However, one issue that arises for unnormalized models is whether extra features that approxi-
mate normalization should be added. That is, the values ZΛ(x) in normalized models can be viewed
as corresponding to additional features that enforce the constraint that all conditional probabilities
correctly sum to 1. As these features are lacking in unnormalized models, it may make sense to
create similar features to compensate for this loss. In this work, we consider adding a normalization
feature corresponding to the history of each n-gram feature in our model; i.e., for each n-gram fea-
ture fθ, we create a feature fhist(θ) such that fhist(θ)(x, y) = 1 iff there is a y′ such that fθ(x, y′) = 1.
The number of additional normalization features is equal to the number of unique n-gram histories
in the training data, which should be a fraction of the total number of regular features. When train-
ing normalization features, we consider both using the same regularization hyperparameters as for
regular features and not regularizing at all, i.e., taking (α = 0, σ2 = ∞).

In Table 3, we display ASR performance using the setup from (Chen, 2009b) for normalized
and unnormalized versions of Model M for various training set sizes. We evaluate both using and
not using normalization (or history) features. While performance differences are quite small, using
normalization features without regularization appears to be slightly better than the other unnormal-
ized variants. As compared to normalized Model M, there appears to be no loss in performance.
In terms of speed, we benchmarked various 4-gram models built on 900k sentences of WSJ data
on a 2.8GHz Xeon CPU. Using our general exponential model implementation, normalized Model
M probabilities can be evaluated at the rate of 35k lookups/s while the unnormalized version runs
at 84k lookups/s. For reference, this implementation executes exponential word n-gram models at
140k lookups/s, while our code specific to word n-gram models runs at 300k lookups/s. Due to time
constraints, we were unable to evaluate unnormalized models on large data sets in Section 6.

4In fact, one can convert an exponential n-gram model to an ARPA format n-gram model without loss (Chen and
Rosenfeld, 2000).

10

1

0.1

0.01

0.001

0.0001

0.00001
 0 100 200 300 400 500 600 700

di
st

an
ce

 in
 o

bj
. f

n.
 fr

om
 c

on
ve

rg
en

ce
 (b

its
)

iteration

GIS
UIS

Figure 3: Convergence speed for GIS and UIS for exponential word trigram model trained on
10k sentences of WSJ. The y-axis represents the difference in the current value of the training
objective function as given in eq. (3) as compared to the (estimated) value of the objective function
at convergence.

5.1 Training

We have found that the ideas in unnormalized modeling can be used to accelerate iterative scaling
for both unnormalized and normalized models. In generalized iterative scaling (GIS), each feature
fi has an observed training count O[fi] and an expectation EpΛ [fi] =

∑
j

∑
y pΛ(y|xj)fi(xj , y)

given the current parameters Λ (Darroch and Ratcliff, 1972). In each iteration, one does an update
of the form (ignoring regularization)

λi ⇐ λi +
1

f#
log

O[fi]
EpΛ [fi]

(8)

where f# is the maximum number of simultaneously active features among the features being
updated. It has been found that updating a subset of nonoverlapping features (such that f# = 1)
in each iteration can be much faster than updating all features simultaneously (with f# > 1),
e.g., (Goodman, 2002). The problem with this approach is that recomputing EpΛ [fi] after each
update is generally quite expensive, so this approach is only beneficial when this recomputation can
be optimized.5

We observe that for unnormalized exponential n-gram models, there exists a special case when
some of the EpΛ [fi] can be recomputed efficiently after an update. To give an example, consider
updating the parameter of a unigram feature fwj by the amount ∆λwj . Note that the expectation
EpΛ [fwj−1wj] for any bigram feature of the form fwj−1wj changes by the factor e∆λwj , and simi-
larly for any other features corresponding to n-grams ending in wj . (This won’t hold for normalized
models because of normalization.) This suggests the following variant of iterative scaling: In each
iteration, we first compute all expectations EpΛ [fi] as in normal GIS. Then, we first update parame-
ters for all unigram features. As these are non-overlapping, we can use a full step size with f# = 1.
Then, we can efficiently compute how EpΛ [fi] will change for all bigram features given the unigram
parameter updates, and we can update all bigram parameters with a full step size. Similarly, we can

5We note that improved iterative scaling (Della Pietra et al., 1997) is equivalent to GIS for unpruned n-gram models
as exactly n features are active for each event. Sequential conditional GIS (Goodman, 2002) is generally not applicable
for n-gram models due to its memory requirements.

11

proceed to update all higher-order n-gram parameters with a full step size. Thus, we can update all
parameters with a full step size in each iteration, rather than with a 1

n step size as in conventional
GIS.

We can apply this variant of iterative scaling, which we call unnormalized iterative scaling
(UIS), to normalized exponential n-gram models as well. As noted earlier, a normalized exponential
model can be viewed as an unnormalized exponential model with additional normalization features
corresponding to the values ZΛ(x). Thus, we can do the same updates as for unnormalized models
in each iteration; this can be viewed as updating all of the features in the model except for the
normalization features. To “update” the normalization features, we can just recompute ZΛ(x) at the
end of each iteration.

In addition to exponential n-gram models, we can also apply UIS to models that contain mul-
tiple sets of n-gram features, such as the class prediction model given in eq. (5) for Model M. In
particular, we can use UIS to update only a single set of n-gram features in each iteration, and
alternate between sets in different iterations.6

In Figure 3, we plot training objective function distance from convergence as a function of
training iteration for GIS and UIS for a word trigram model trained on 10k sentences of WSJ. We
estimate the value of the training objective function at convergence by running a very large number
of training iterations. Clearly, UIS converges much faster; to get the training objective function to
within 0.01 bits of convergence, UIS requires 25 iterations while GIS requires 128 iterations; to get
within 0.001 bits, the values are 107 and 448 iterations, respectively. To give some idea of overall
training times, on a 2.66GHz Xeon 5150, training an exponential word 4-gram model on 900k
sentences of WSJ data takes about 3h; for Model M, the corresponding training time (excluding
word class building) is about 8h. Training times appear to be slightly sublinear in training set
size. In our implementation, we use cluster expansion (Lafferty and Suhm, 1995) to accelerate the
computation of expectations.

6 Experiments

In this section, we investigate whether Model M and rMDI modeling can improve the performance
of existing medium and large-scale state-of-the-art systems, three for ASR and one for machine
translation. For each system, we compare against the current best language model for that system
trained on all available training data; except where noted, this is the system we refer to as the
baseline. We evaluate the best methods found in Section 4, but also do contrast runs with other
methods to attempt to confirm the findings in that section. While Model M gives consistent gains
over word n-gram models in Section 4, we verify whether these gains carry over to larger data sets.

All exponential models are trained with `1 + `2
2 regularization with (α = 0.5, σ2 = 6); con-

ventional n-gram models are trained using modified Kneser-Ney (KN) smoothing (Chen and Good-
man, 1998). Unless otherwise noted, we use the 4-gram version of each model; we induce 150
word classes using the algorithm of (Brown et al., 1992) for Model M; and interpolation weights
are trained to optimize the perplexity of a held-out set. Experiments with Model M are substantially
more expensive in both time and memory than those with n-gram models, partially due to algorith-
mic considerations and partially because our exponential model code has not yet been optimized
much. This constrained the number of Model M experiments we were able to run.

6In similar fashion, for unnormalized models with normalization features, we update only normalization features or
only regular features in each training iteration.

12

word n-gram models
WER

interp, KN n-gram 16.9%
rMDI, exp. n-gram 16.7%
merge, exp. n-gram 16.6%
interp, exp. n-gram 16.6%

Model M
WER

rMDI 16.4%
merge 16.3%
interp 16.3%

Table 4: Comparison of language models on the voicemail transcription task.

6.1 English Voicemail Transcription

We evaluate the performance of Model M and rMDI models on the task of English voicemail tran-
scription. Recently, ASR is increasingly being deployed in unified messaging systems to serve as an
aid to human transcribers or as a standalone service. Here, we report on an in-house voicemail tran-
scription task. The ASR system is based on the 2007 IBM GALE speech transcription system (Chen
et al., 2006). The discriminatively-trained acoustic model was trained on 2000h of voicemail mes-
sages using speaker-adapted PLP features and contains 8000 context-dependent states and 300k
Gaussians.

We have two sources of language model data: the verbatim transcripts of the acoustic training
data (17M words), and 41M words of approximate voicemail transcripts cleaned up for readability.
The first corpus is very well-matched to the test set; the second corpus less so. The baseline language
model, built using a 40k-word lexicon, is the interpolation of two word 4-gram models, one trained
on each of the LM training corpora. The 5.5h test set consists of 900 messages and 62k words;
the perplexity of the baseline LM on this set is 43 and the WER is 16.9%. Language models are
evaluated via lattice rescoring on lattices generated using the baseline LM. Increasing the lexicon
size to 150k words did not impact the WER.

To decide which model combination method should work best with Model M, the main issue
is whether the two corpora are similar enough to be considered a single corpus or not. If so, we
expect count merging to do best; if not, we expect linear interpolation to do as well as anything
else. In Table 4, we display the results for various algorithms. The first row in the table on the
left represents the baseline method. The second and third rows represent replacing conventional
n-gram models with exponential n-gram models, using either linear interpolation or rMDI models
for model combination. The table on the right corresponds to using Model M instead of word n-
gram models. Model M yields the best performance; a WER of 16.3% is obtained both through
count merging and interpolation (using the same weights as in the baseline model), a gain of 0.6%
absolute. Notably, the best Model M result surpasses the best word n-gram model number by only
0.3% absolute, which is significantly less than the gains found earlier. We speculate this is because
the word n-gram models are already quite well-estimated: the merged model has a model size of
only 0.7 nats/event.

For model combination, linear interpolation slightly outperforms rMDI models. We hypothesize
that this is because the “out-of-domain” corpus is actually quite in-domain, in which case rMDI
adaptation does not give the desired behavior.

6.2 English Broadcast News Transcription

In this section, we examine whether Model M can improve performance on an English Broadcast
News task. The ASR system is based on the 2007 IBM GALE speech transcription system. The

13

DEV07 DEV08 EVAL08

Interpolation over all 16 corpora
Baseline: 16 KN LMs 9.5% 11.0% 9.4%
5 Model M + 11 KN LMs 9.1% 10.6% 9.0%
3 M (500c) + 2 M (150c) + 11 KN 9.0% 10.4% 8.9%

Interpolation over 5 of 16 corpora
5 KN LMs 10.0% 11.3% 9.6%
5 Model M LMs 9.4% 10.8% 9.0%

Table 5: Word-error rates for interpolated LMs on several GALE Arabic test sets, varying how many
component models are word n-gram models and how many are Model M.

DEV07 DEV08 EVAL08
KN LM 12.1% 13.2% 11.8%
Model M, 150 classes 11.6% 12.9% 11.2%
Model M, 300 classes 11.5% 12.9% 11.1%
Model M, 500 classes 11.3% 12.7% 11.1%

Table 6: Word-error rates for a single Model M on GALE Arabic for different numbers of word
classes.

acoustic model was trained on 430h of Broadcast News audio including the 1996 and 1997 English
Broadcast News Speech corpora (LDC97S44 and LDC98S71) and the TDT4 Multilingual Broad-
cast News Speech corpus (LDC2005S11). The model contains 6000 context-dependent states and
250k Gaussians and was discriminatively trained using lattice-based fMPE and MPE with backing
off to MMI estimates in I-smoothing.

The LM training text consists of a total of 400M words from the following six sources: 1996
CSR Hub4 language model data; EARS BN03 closed captions; GALE Phase 2 Distillation GNG
Evaluation Supplemental Multilingual data; Hub4 acoustic model training transcripts; TDT4 closed
captions; and TDT4 newswire. The vocabulary is 80k words and the baseline language model is a
linear interpolation of word 4-gram models, one for each corpus. Interpolation weights are chosen
to optimize perplexity on a held-out set of 25k words, the rt03 evaluation set. The evaluation set is
the 2.5h rt04 evaluation set containing 45k words; the WER of the baseline LM on this data set is
13.0%.

The experiments in Section 4.2 use a scaled-down version of this task, and thus we expect the
same methods will work best. We build Model M on each source and interpolate them using the
same weights as in the baseline, yielding a WER of 12.3%, or a gain of 0.7% absolute. To our
knowledge, this is the best single-system result for this data set, surpassing the previous best of
12.6% (Gales et al., 2006). On the held-out set, the perplexity is reduced from 133 for the baseline
to 121. As a contrast, we also evaluated cascaded rMDI for model combination, ordering models
by their interpolation weight. This model performed much worse as in Section 4.2, yielding a WER
of 13.1% and perplexity of 150.

14

6.3 GALE Arabic Transcription

Arabic broadcast transcription is a core component of DARPA’s Global Autonomous Language
Exploitation (GALE) program. In this section, we assess whether Model M can improve the per-
formance of the best Arabic ASR system fielded in the January 2009 GALE evaluation. This will
demonstrate whether Model M can outperform an optimized state-of-the-art language model where
a billion words of data or more is available, in conjunction with a state-of-the-art acoustic model.
The acoustic model is a discriminatively-trained Universal Background Model (Povey et al., 2008)
trained on 1400h of transcribed audio (Soltau et al., 2007). We have 16 sources of language model
training data totaling 1.3 billion words: transcripts of the audio data; the Arabic Gigaword corpus;
newsgroup and weblog data; etc. The baseline language model has a vocabulary of 774k words and
is a linear interpolation of 4-gram models (with modified Kneser-Ney smoothing) built on each of
the 16 sources. Interpolation weights are chosen to minimize perplexity on a held-out set.

In our initial experiment, we build Model M models on the five corpora with the highest interpo-
lation weights in the baseline model, with a combined weight of 0.6. We replace the corresponding
n-gram models with Model M for these five sources and reoptimize interpolation weights. In the
first two rows of Table 5, we present lattice rescoring results for the baseline LM and this new LM
over a variety of test sets: DEV07 (2.6h), DEV08 (3h) and EVAL08 (3h). We see that a significant
improvement of 0.4% absolute is achieved over the baseline even when using an off-the-shelf con-
figuration (150 word classes) for only five out of the 16 LM sources on a state-of-the-art system
with a very low baseline WER. To isolate the gains of Model M, we also display results when inter-
polating only the five sources under consideration. In the last two rows of Table 5, we show results
for interpolating only conventional n-gram models and only Model M models; we see 0.5–0.6%
absolute gain from Model M.

Given that our Arabic vocabulary is much larger than the original WSJ vocabulary used to
optimize the number of word classes, we investigate whether using more than 150 word classes
can improve performance. On the corpus with the highest interpolation weight in the baseline LM
(Broadcast News audio transcripts, 5M words), we vary the number of word classes used with
Model M. As can be seen in Table 6, 500 word classes yield the best results. We rebuild three of
the five Model M models in the 16-way interpolation from before using 500 classes instead of 150,
and this yields additional improvement as seen from the third row in Table 5. For reference, our
best previous LM included interpolation with a 6-gram neural net LM and yielded WER’s of 9.3%,
10.6%, and 9.1% on our three test sets.

6.4 Machine Translation

In this section, we evaluate whether Model M performs well on the task of machine translation.
In addition, we evaluate whether the performance of Model M can be improved by linearly inter-
polating with a word n-gram model. We consider two different domains, Iraqi Arabic/English and
Spanish/English bidirectional translation. For Iraqi Arabic/English, the parallel training corpus con-
sists of 430k utterance pairs containing 98k unique Arabic words and 31k unique English words.
The Arabic LM training data is composed of the 2.7M words of Arabic in the parallel training
corpus. Applying a morphological segmentation algorithm (Afify et al., 2006) to the Iraqi Arabic
training data results in 58k unique morphemes and 2.8M morpheme tokens. For English, we use
6.4M words of text, of which the English data in the MT training corpus is a subset. For English
to Arabic, we have a development set of 19k words (2.2k sentences) to tune feature weights, and a
test set of about the same size. For Arabic to English, the development and test sets are about 21k
words (2.9k sentences).

15

50-best 20-best 10-best

English ⇒ Iraqi Arabic
N -best oracle 38.7/37.4 36.4/34.9 34.0/32.6
3-gram 30.6/29.7 30.6/29.7 30.6/29.7
Model M 31.0/30.3 31.1/30.4 31.1/30.2
3-gram + Model M 31.0/30.5 31.0/30.3 31.0/30.2

Iraqi Arabic ⇒ English
N -best oracle 36.5/36.3 34.4/34.1 32.5/32.3
3-gram 25.4/24.7 25.4/24.7 25.4/24.7
Model M 24.9/26.0 25.1/25.8 25.3/25.9
3-gram + Model M 25.5/26.1 25.4/26.0 25.5/26.0

English ⇒ Spanish
N -best oracle 34.8/36.1 32.7/34.2 30.8/31.7
4-gram 21.7/21.5 21.7/21.5 21.7/21.2
Model M 22.8/23.0 22.7/23.0 22.8/22.8
4-gram + Model M 22.6/22.9 22.5/22.8 22.8/22.8

Spanish ⇒ English
N -best oracle 32.1/32.3 29.4/29.2 26.9/26.1
4-gram 18.1/17.6 18.3/17.6 18.0/17.6
Model M 19.6/18.4 19.3/18.8 19.1/18.3
4-gram + Model M 19.4/18.5 19.2/18.8 19.0/18.4

Table 7: BLEU scores for various language models for Iraqi Arabic/English and Spanish/English
translation, using N -best list rescoring of N -best lists of various size. For each model, we report
(development set/test set) results.

For Spanish/English, the target task is a travel application. The MT training data consists of
conversational travel data as well as movie subtitles and TV show transcriptions, 2.1M sentence
pairs in all with 14.3M English tokens (137k unique) and 13.5M Spanish tokens (176k unique). The
MT training data is also used for language model training. The test and development sets consist
of 711 sentence pairs each, with about 5.9k English and 5.6k Spanish tokens in each. The machine
translation models are built according to a commonly used recipe: word alignment models are
trained in both translation directions using parallel sentence pairs, and two sets of Viterbi alignments
are derived. The alignments from both directions are combined in a heuristic fashion to form a single
alignment (Och and Ney, 2003). All phrase pairs (up to a maximum length of six words) that satisfy
a word alignment boundary constraint are identified and included in the phrase translation table, and
translation parameters are computed using maximum likelihood estimation. We use a phrase-based
multi-stack decoder using log-linear models similar to Pharaoh (Koehn et al., 2003). As in most
maximum-entropy-based decoders, we include features for bidirectional translation probabilities,
bidirectional lexicon weights, language model scores, distortion model scores, and a sentence length
penalty.

To evaluate Model M, we do N -best list rescoring and measure translation performance using
BLEU score (Papineni et al., 2002) with one reference for each hypothesis. The baseline language

16

model is a conventional n-gram model, and this baseline model is used to generate translation N -
best lists of various size (N=10, 20, and 50). Feature weights (including the language model weight)
are optimized on the development data using the downhill simplex method (Och and Ney, 2001) to
maximize BLEU score. In addition to the baseline, we evaluate Model M as well as Model M
interpolated with the baseline n-gram model. For Model M and the interpolated model, we take
the feature weights from the baseline model and re-optimize only the language model weight using
a local line search. (Retuning all weights may improve results further.) For Arabic/English, we
use 1-best weight tuning while for Spanish/English, N -best tuning is used. We have not observed
significant performance differences between the two strategies. For Arabic/English, the trigram
versions of each model are used due to the small amount of training data, over morphemes for Iraqi
Arabic and over words for English. For Spanish/English, 4-gram versions of each model are used.

In Table 7, we display the BLEU scores for each model as well as the oracle BLEU scores for
each different N -best list size, for both the development and test sets. We see consistent gains in test
set BLEU scores across all conditions for Model M as compared to the baseline, with gains ranging
from 0.5 to 1.6 points. Interpolating Model M with the baseline gives about the same performance
as Model M alone, indicating that Model M already encompasses most or all of the information
included in an n-gram model.

7 Discussion

We show that Model M consistently outperforms the best existing language models over a variety
of domains and applications. While our analysis shows that shrinkage-based gains will decrease
as training sets increase in size, we still find significant gains even on tasks where over a billion
words of training data are available. We achieve WER gains of 0.5–0.7% absolute for three large-
scale ASR systems, including state-of-the-art systems on the highly competitive English Broadcast
News and GALE Arabic tasks. While other language modeling methods have provided gains over
interpolations of word 4-gram models at smaller scale, we are unaware of any techniques that give
nearly this much gain on systems of this scale (and which do not require interpolation with a word
n-gram model). On the other hand, while rMDI models can give gains against other techniques for
domain adaptation on moderately-sized corpora, it does not outperform linear interpolation on large
data sets or on general model combination tasks, especially in conjunction with Model M.

The performance gains from Model M come at a computational cost. While Model M is smaller
in parameter mass relative to a word n-gram model trained on the same corpus, it has many more
parameters. For 4-gram models built on 900k sentences of WSJ data, Model M has about twice
as many parameters as a word n-gram model (49M vs. 25M). In addition, training and probability
evaluation are much slower as compared to n-gram models. However, training for exponential
models can be efficiently parallelized, e.g., (Rosenfeld, 1996), and for unnormalized models, a
single probability lookup can be implemented via three n-gram model lookups.

In summary, despite the advances in language modeling over the past decades, word n-gram
models remain the technology of choice in systems both large and small. Here, we show that Model
M is a compelling alternative for a wide range of applications and operating points.

Acknowledgments

The authors would like to thank DARPA for funding part of this work under Grant HR0011-06-2-
0001.

17

References

Mohamed Afify, Ruhi Sarikaya, Hong-Kwang Jeff Kuo, Laurent Besacier, and Yuqing Gao. 2006.
On the use of morphological analysis for dialectal arabic speech recognition. In Proceedings of
Interspeech.

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och, and Jeffrey Dean. 2007. Large language
models in machine translation. In Proceedings of EMNLP-CoNLL, pages 858–867.

Peter F. Brown, Vincent J. Della Pietra, Peter V. deSouza, Jennifer C. Lai, and Robert L. Mercer.
1992. Class-based n-gram models of natural language. Computational Linguistics, 18(4):467–
479, December.

Stanley F. Chen and Joshua Goodman. 1998. An empirical study of smoothing techniques for
language modeling. Technical Report TR-10-98, Harvard University.

Stanley F. Chen and Ronald Rosenfeld. 2000. A survey of smoothing techniques for maximum
entropy models. IEEE Transactions on Speech and Audio Processing, 8(1):37–50.

Stanley F. Chen, Brian Kingsbury, Lidia Mangu, Daniel Povey, George Saon, Hagen Soltau, and
Geoffrey Zweig. 2006. Advances in speech transcription at IBM under the DARPA EARS
program. IEEE Transactions on Audio, Speech and Language Processing, pages 1596–1608.

Stanley F. Chen. 2008. Performance prediction for exponential language models. Technical Report
RC 24671, IBM Research Division, October.

Stanley F. Chen. 2009a. Performance prediction for exponential language models. In Proceedings
of NAACL-HLT.

Stanley F. Chen. 2009b. Shrinking exponential language models. In Proceedings of NAACL-HLT.

J.N. Darroch and D. Ratcliff. 1972. Generalized iterative scaling for log-linear models. The Annals
of Mathematical Statistics, 43:1470–1480.

Stephen Della Pietra, Vincent Della Pietra, Robert L. Mercer, and Salim Roukos. 1992. Adaptive
language modeling using minimum discriminant estimation. In Proceedings of the Speech and
Natural Language DARPA Workshop, February.

Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. 1997. Inducing features of random
fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):380–393, April.

Marcello Federico. 1996. Bayesian estimation methods for n-gram language model adaptation. In
Proceedings of ICSLP, pages 240–243.

M. J. F. Gales, Do Yeong Kim, P. C. Woodland, Ho Yin Chan, D. Mrva, R. Sinha, and S. E. Tranter.
2006. Progress in the CU-HTK broadcast news transcription system. IEEE Transactions on
Audio, Speech, and Language Processing, 14(5):1513–1525, September.

Joshua Goodman. 2002. Sequential conditional generalized iterative scaling. In Proceedings of
ACL.

18

Frederick Jelinek, Bernard Merialdo, Salim Roukos, and Martin Strauss. 1991. A dynamic lan-
guage model for speech recognition. In Proceedings of the DARPA Workshop on Speech and
Natural Language, pages 293–295, Morristown, NJ, USA. Association for Computational Lin-
guistics.

Jun’ichi Kazama and Jun’ichi Tsujii. 2003. Evaluation and extension of maximum entropy models
with inequality constraints. In Proceedings of EMNLP, pages 137–144.

Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003. Statistical phrase-based translation. In
Proceedings of HLT-NAACL, pages 48–54, Morristown, NJ, USA. Association for Computa-
tional Linguistics.

J.D. Lafferty and B. Suhm. 1995. Cluster expansions and iterative scaling for maximum entropy
language models. In K. Hanson and R. Silver, editors, Maximum Entropy and Bayesian Meth-
ods, pages 195–202. Kluwer Academic Publishers.

Guy Lebanon and John Lafferty. 2001. Boosting and maximum likelihood for exponential models.
In Advances in Neural Information Processing Systems, pages 447–454.

Hirokazu Masataki, Yoshinori Sagisaka, Kazuya Hisaki, and Tatsuya Kawahara. 1997. Task adapta-
tion using MAP estimation in n-gram language modeling. In Proceedings of ICASSP, volume 2,
pages 783–786, Washington, DC, USA. IEEE Computer Society.

Franz Josef Och and Hermann Ney. 2001. Discriminative training and maximum entropy models
for statistical machine translation. In Proceedings of ACL, pages 295–302, Morristown, NJ,
USA. Association for Computational Linguistics.

Franz Josef Och and Hermann Ney. 2003. A systematic comparison of various statistical alignment
models. Computational Linguistics, 29(1):19–51.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei jing Zhu. 2002. BLEU: a method for
automatic evaluation of machine translation. In Proceedings of ACL, pages 311–318.

Daniel Povey, Stephen M. Chu, and Balakrishnan Varadarajan. 2008. Universal background model
based speech recognition. In Proceedings of ICASSP.

Ronald Rosenfeld. 1996. A maximum entropy approach to adaptive statistical language modeling.
Computer Speech and Language, 10:187–228.

George Saon, Daniel Povey, and Geoffrey Zweig. 2005. Anatomy of an extremely fast LVCSR
decoder. In Proceedings of Interspeech, pages 549–552.

K. Seymore and R. Rosenfeld. 1997. Using story topics for language model adaptation. In Pro-
ceedings of Eurospeech.

Hagen Soltau, Brian Kingsbury, Lidia Mangu, Daniel Povey, George Saon, and Geoffrey Zweig.
2005. The IBM 2004 conversational telephony system for rich transcription. In Proceedings of
ICASSP, pages 205–208.

Hagen Soltau, George Saon, Brian Kingsbury, Jeff Kuo, Lidia Mangu, Daniel Povey, and Geoffrey
Zweig. 2007. The IBM 2006 GALE Arabic ASR system. In Proceedings of ICASSP.

19

Andreas Stolcke. 1998. Entropy-based pruning of backoff language models. In Proceedings of the
DARPA Broadcast News Transcription and Understanding Workshop, pages 270–274, Lans-
downe, VA, February.

20

