
Enhanced Word Classing for Model M

Stanley F. Chen and Stephen M. Chu

IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 USA
{stanchen,schu }@us.ibm.com

Abstract
Model M is a superior class-basedn-gram model that has shown
improvements on a variety of tasks and domains. In previous
work with Model M, bigram mutual information clustering has
been used to derive word classes. In this paper, we introduce
a new word classing method designed to closely match with
Model M. The proposed classing technique achieves gains in
speech recognition word-error rate of up to 1.1% absolute over
the baseline clustering, and a total gain of up to 3.0% absolute
over a Katz-smoothed trigram model, the largest such gain ever
reported for a class-based language model.

1. Introduction
The most popular technique for inducing word classes for lan-
guage modeling is bigram mutual information clustering, where
classes are chosen to optimize the training set likelihood of
a simple class-based bigram model [1, 2]. In particular, each
word belongs to only a single class, and we have

p(w1 · · ·wl) = p(c1 · · · cl+1, w1 · · ·wl)

=

l+1Y
j=1

p(cj |cj−1)p(wj |cj) (1)

for a sentencew1 · · ·wl wherecj is the class for wordwj and
wherecl+1 is taken to be a distinguished end-of-sentence token.
Typically, classes induced using this algorithm, which we refer
to as theIBM classing algorithm, are plugged into a class-based
n-gram language model of the same basic form.

Recently, a new class-basedn-gram model, Model M, has
been shown to give excellent performance across a variety of
domains and tasks [3, 4, 5]. The form of the model is

p(w1 · · ·wl) =

l+1Y
j=1

png(cj |cj−2cj−1, wj−2wj−1)×
lY

j=1

png(wj |wj−2wj−1cj) (2)

where png(y|ω) denotes an exponentialn-gram model and
wherepng(y|ω1, ω2) denotes a model containing all features
in png(y|ω1) andpng(y|ω2). In previous work with Model M,
classes were generated using the IBM classing algorithm, but
we note that Model M is very different from the model used in
IBM classing. Particularly, unlike in eq. (1), the probabilities of
the current class and word are conditioned directly on the iden-
tities of preceding words. Thus, there is a mismatch between
Model M and the model used to select its word classes.

In this work, we aim to improve the performance of Model
M by developing a clustering algorithm that is tailored specifi-
cally to this model. While Model M is too complex to be used
directly for word clustering, we find that choosing classes to op-
timize the likelihood of a simplified version of Model M leads
to much better performance than with IBM classing.

This paper is organized as follows: In Section 2, we review
the IBM classing algorithm. In Section 3, we show how the
objective function optimized in IBM classing can be modified to
better match Model M. Section 4 proposes improvements to the
search algorithm used in IBM classing. Experimental findings
on Wall Street Journal data are given in Section 5, followed by
conclusions in Section 6. Due to space constraints, many details
of this work have been omitted; a much longer description is
provided in [6].

2. Background
In IBM classing, classes are chosen to maximize the likelihood
of the training data according to the model given in eq. (1),
wherep(cj |cj−1) andp(wj |cj) are estimated using maximum
likelihood estimation. Given a classingC, or assignment of
each word in the vocabulary to a word class, the log likelihood
L2g(C) of the training data can be written as

L2g(C) =
X

wj−1wj

C(wj−1wj) log p(wj |wj−1) (3)

=
X

wj−1wj

C(wj−1wj) log
C(cj−1cj)

C(cj−1)

C(wj)

C(cj)
(4)

whereC(ω) is the training set count of then-gramω. Note that
C(cj−1) is the count of classcj−1 in thehistoryposition while
C(cj) is the count of classcj in the predictedposition. Our
goal is to find the classingC∗ satisfying

C∗ = arg max
C

L2g(C) (5)

= arg max
C

X
cj−1cj

C(cj−1cj) log C(cj−1cj)−

X
cj−1

C(cj−1) log C(cj−1)−
X
cj

C(cj) log C(cj) (6)

omitting terms that do not depend onC [2].

3. Improving the objective function
Intuitively, the optimal model for inducing word classes is the
actual language model in which the word classes will be used.
However, choosing classes that directly optimize the likelihood
of Model M is impractical due to computational cost. Thus,
our task is to find a class-based language model for which class
induction is efficient, but which still approximately reflects the
quality of word classes when used in Model M.

3.1. Conditionalvs.joint modeling

Our first change to the IBM classing objective function is to
replace eq. (3) with the following:

L
joint
2g (C) =

X
wj−1wj

C(wj−1wj) log p(wj−1wj) (7)

That is, we change the conditionaln-gram probability to a joint
one. This can be viewed as converting the training text into its
component bigrams, each generated independently.

This choice is motivated in two ways. First, as will be dis-
cussed in Section 3.2, this change makes it easier to estimate
the performance of the model on unseen data. Second, it al-
lows an interesting generalization of the IBM classing objective
function. Notice that the class bigram term in eq. (6) is posi-
tive, which implies that the lower the entropy of the distribution
C(cj−1cj), the better the score of a word classing. That is,
a good classing should result in high counts for fewer class bi-
grams, rather than counts evenly spread across all class bigrams.
However, consider the trigram version of eq. (6) as given in [7]:

C∗ = arg max
C

L3g(C) (8)

= arg max
C

X
cj−2cj−1cj

C(cj−2cj−1cj) log C(cj−2cj−1cj)−

X
cj−2cj−1

C(cj−2cj−1) log C(cj−2cj−1)−
X
cj

C(cj) log C(cj)

The class bigram term isnegative, which implies that classings
with high class bigram entropy are encouraged. This seems
counterintuitive; we expect good trigram classings should have
both low class bigram and trigram entropies.

We hypothesize that this discrepancy arises because IBM
classing assumes that class distributions are estimated via max-
imum likelihood, while in practice we care how classes perform
in smootheddistributions. It is straightforward to address this
discrepancy in joint modeling. For the bigram case, expanding
eq. (7) leads to exactly eq. (6). For the trigram case, we get

C∗ = arg max
C

L
joint
3g (C) (9)

= arg max
C

X
cj−2cj−1cj

C(cj−2cj−1cj) log C(cj−2cj−1cj)−

X
cj−2

C(cj−2) log C(cj−2)−
X
cj−1

C(cj−1) log C(cj−1)−

X
cj

C(cj) log C(cj) (10)

To get the desired behavior of having both positive bigram and
trigram terms, we combine eqs. (6) and (10) like so:

C∗ = arg max
C

L
joint
2g (C) + L

joint
3g (C) (11)

This can be interpreted as duplicating the training set, expand-
ing one copy to its component bigrams and one into trigrams.

3.2. Adding word n-gram features

Comparing the IBM classing model and Model M as given in
eqs. (1) and (2), the most obvious difference is that Model M
conditions directly on previous words when predicting classes
and words, while the IBM class model does not. Hence, it is
logical to account for wordn-gram features in the model we
use for selecting classes.

When accounting for wordn-gram features, it seems rea-
sonable to use wordn-gram probabilities for wordn-grams in
the training data, and only to backoff to classn-gram proba-
bilities for unseen wordn-grams. In this case, one cannot do
meaningful classing by optimizing the likelihood of the train-
ing data, since classn-grams will never be used on the training

set. Instead, we would like to estimate the performance of word
classings on unseen data, ortest data. One method for doing
this is the leaving-one-out method [2]; here, we use ideas from
smoothing such as the Good-Turing estimate to make educated
guesses about the average counts of different types of seen and
unseen events. Given these counts, we do maximum likelihood
estimation of the model parameters and then compute the like-
lihood of our hypothetical test set with this model. In this way,
we can select word classes that optimize an estimate of test set
likelihood, rather than training set likelihood.

We outline the approach for the bigram case below; the
complete derivation can be found in [6]. We can write test set
log likelihood as

L̃
joint
2g (C) = Ctot

X
wj−1wj

p̃(wj−1wj) log p̃(wj−1wj) (12)

whereCtot is the number of words in the training setD (and
hypothetical test set) and where ‘’̃ is used to mark quantities
estimated on unseen data. In estimatingp̃(wj−1wj), we con-
sider three different cases:wj−1wj occurs in the training set
(p̃1); wj−1wj doesn’t occur in the training set but its classn-
gram cj−1cj does (̃p2); and neitherwj−1wj nor its classn-
gramcj−1cj occur in the training set (̃p3). That is, we take

p̃(wj−1wj) =

(
p̃1(wj−1wj) if wj−1wj ∈ D
p̃2(wj−1wj) if wj−1wj 6∈ D, cj−1cj ∈ D
p̃3(wj−1wj) otherwise

For the first case, we take

p̃1(wj−1wj) =
C̃(wj−1wj)

Ctot
≡ C(wj−1wj)−D(wj−1wj)

Ctot

whereD(wj−1wj) is a discount, or an estimate of the differ-
ence between the training and test count of ann-gram. For the
second case, we take

p̃2(wj−1wj) ≈ p̃(cj−1cj)p̃(wj−1|cj−1)p̃(wj |cj) (13)

where

p̃(cj−1cj) =
C̃(cj−1cj)−

P
wj−1wj∈cj−1cj

C̃(wj−1wj)

Ctot

=

X
wj−1wj∈cj−1cj

D(wj−1wj)−D(cj−1cj)

Ctot
≡ C̃−w(cj−1cj)

Ctot

and where

p̃(wj |cj) =

P
wj−1

D(wj−1wj)−D(wj)X
wj∈cj

[
P

wj−1
D(wj−1wj)−D(wj)]

≡ C̃−w(wj)

C̃−w(cj)

wherep̃(wj−1|cj−1) is defined analogously. Finally, we take

p̃3(wj−1wj) ≈
C̃unseen

Ctot
p̃(wj−1)p̃(wj) (14)

whereC̃unseenhas the value

Ctot −
X

wj−1wj∈D

C̃(wj−1wj)−
X

cj−1cj∈D

C̃−w(cj−1cj) =
X

cj−1cj∈D

D(cj−1cj)

and

p̃(wj) =

P
wj−1

D(wj−1wj)−D(wj)P
wj

[
P

wj−1
D(wj−1wj)−D(wj)]

≡ C̃−w(wj)

C̃−w
tot

Plugging these equations into eq. (12), we get

L̃
joint
2g (C) ≈

X
cj−1cj∈D

C̃−w(cj−1cj) log C̃−w(cj−1cj)−

X
cj−1∈D

C̃−w(cj−1) log C̃−w(cj−1)−
X

cj∈D

C̃−w(cj) log C̃−w(cj)+

C̃unseen

»
log

C̃unseen

Ctot
−H(wj−1)−H(wj)

–
+ const(C)

whereH(wj) denotes theentropyof the distributionp̃(wj).
Notably, this new equation is similar to eq. (6) except for two
main changes: Instead of terms likeC(cj−1cj) andC(cj−1) we
have terms likẽC−w(cj−1cj) andC̃−w(cj−1); and we have an
additional term involvingC̃unseen. The first change essentially
replaces word bigram counts with theirdiscounts. This makes
sense in the presence of wordn-gram features, as frequent bi-
grams will be primarily modeled through word bigram features
rather than class bigram features.

The term involvingC̃unseencan be viewed as controlling
the number of word classes. Without this term, the objective
function prefers having as many classes as possible. This term
is negative, and the value of̃Cunseenis roughly proportional to
the number of unique class bigrams in the training data. Thus,
the more word classes, the largerC̃unseenwill tend to be, and
the more the corresponding term penalizes the total log likeli-
hood. However, thẽCunseenterm may not pick the best number
of classes for Model M due to the differences between our ob-
jective function and the actual Model M likelihood. Thus, we
apply a coefficientβ to this term to allow the number of classes
to be adjusted.

For the trigram version of the objective function, we com-
bine the log likelihoods of a bigram corpus and trigram corpus
as in eq. (11). We also add in a prior term on the number of
classes to prevent the number of classes from exploding, as well
as a prior term to encourage words to be placed in the same word
class as theunknowntoken. In this way, words with few counts
will tend to be placed in this class unless there is strong evidence
suggesting otherwise. To estimate discountsD(·), we evaluate
both absolute discounting and the Good-Turing estimate.

4. Improving search
The primary algorithm for searching for word classes in IBM
classing is theexchangealgorithm [1, 2]. Given some initial
classes, one repeatedly loops through the words in the vocab-
ulary in decreasing frequency order, finding the class for each
word that maximizes the objective function. If that class is dif-
ferent than a word’s current class, that word is moved to the
new class. The algorithm terminates when there are no more
exchange moves that improve the objective function. One ob-
vious flaw with the exchange algorithm is that it can only move
one word at a time. In some cases, it may be possible to escape
a local minimum only by moving a group of words together.
Thus, we also consider classmergeandsplit moves, as are used
in bottom-up (e.g., [1]) and top-down clustering (e.g., [8]).

For merge moves, we consider all possible pairwise class
merges and take the one that improves the objective function
the most. For split moves, we consider a number of candidate
splits for each class, and take the split over all classes that im-
proves the objective function the most. To generate candidate
splits for each class, we use a method based on Chou’s algo-
rithm [8]. That is, we randomly divide a class in two, and then

Table 1: Model M log perplexity in nats on the matched de-
velopment set for word classes generated by various algorithms
over a range of training set sizes. The trigram version of each
algorithm is used unless otherwise noted.

training set (sents.)
1k 10k 100k

IBM alg., bigram version 6.137 5.118 4.511
IBM alg., trigram version 6.335 5.114 4.506
new alg., as is 5.778 5.041 4.483
new alg., non-random init. 5.778 5.041 4.484
new alg., IBM search 5.785 5.042 4.489
new alg., one-stage search 5.878 5.055 4.485
new alg., bigram version 5.819 5.098 4.515
new alg., w/o bigram term 5.765 5.033 4.483
new alg., no discounting 6.022 5.120 4.504
new alg., w/o word n-grams 5.787 5.049 4.492
new alg., no unknown prior 6.020 5.085 4.481

run the exchange algorithm within the class to termination. We
can generate multiple splits by using multiple starting points.

In our final recipe, we alternate merge phases with split
phases. In the merge phase, we do a bunch of merge moves
in order of decreasing gain in the objective function, until there
are no more profitable moves or we reach a predefined number
of moves. Then, we complete the merge phase by running the
exchange algorithm to termination. The split phase is defined
analogously. We group merge moves and split moves together
by phase for computational efficiency. As suggested in [8], we
split search into two stages, where in the first stage we only
move words with a minimum number of counts, and in the sec-
ond stage we allow all words to move.

5. Experimental results
For our perplexity and speech-recognition word error results,
we use the same Wall Street Journal data sets and methodology
as in [3]. We randomly ordered sentences taken from the 1993
CSR-III Text corpus; reserved 2.5k sentences (64k words) as
the matcheddevelopment set; and selected training sets of 1k,
10k, 100k, and 900k sentences from the remaining data, where
a sentence has about 25.8 words on average. The matched de-
velopment set is used to select classing algorithm parameters.
The vocabulary consists of the union of the training vocabulary
and 20k word “closed” test vocabulary from the first Wall Street
Journal CSR corpus, a total of about 21k words.

For the speech recognition experiments, we selected an
acousticdevelopment set of 977 sentences (18.3k words) and
an evaluation set of 2.4k sentences (46.9k words). The acoustic
model used is a cross-word quinphone system built from 50h
of Broadcast News data and it contains 2176 context-dependent
states and 50k Gaussians. We use lattice rescoring for the lan-
guage model evaluations, and choose the acoustic weight for
each model to optimize the lattice rescoring word-error rate of
that model on the acoustic development set.

First, we report experiments on our smaller training sets
to evaluate how each aspect of our classing algorithm affects
performance. In Table 1, we compare various classing algo-
rithms by building trigram Model M (regularized as described
in [3]) on the resulting classes and measuring log perplexity in
nats on the matched development set. A nat is anatural bit, or
log2 e regular bits, and each 0.01 nat is equivalent to about a 1%
change in perplexity. We consider two methods for initializing
classes for search (where the number of classes isk): assigning
thek − 1 most frequent words to their own classes and placing

the remaining words in the final class; and placing words ran-
domly across classes [7]. By default, we use the non-random
initialization method with IBM classing as this is the popular
choice. For our classing algorithm, we use random initializa-
tion so that we can average performance over multiple runs to
reduce evaluation variance. For all the runs with random initial-
ization, reported performances are averages over five runs with
different random initialization. For each condition, we try 35,
50, 75, 100, 150, 200, and 300 target classes, and only report
the best perplexity achieved. Unless otherwise noted, we use
the trigram version of our clustering algorithm.

In Table 1, we first give performance for the bigram and
trigram versions of IBM classing (with IBM search); then for
our new classing algorithm; then for our new classing algorithm
with different search strategies; and then for our new algorithm
with various modifications to the objective function. We use
IBM searchto refer to non-random initialization followed by
the exchange algorithm. We can see the impact of various as-
pects on our algorithm. Removing each of the listed factors
generally hurts the performance of our algorithm, except for the
exclusion of the bigram term (discussed in Section 3.1), but we
keep this term for the reasons described in that section. We see
that changes in the objective function appear to have a larger
overall impact than changes in the search algorithm.

In Table 2, we compare the performance in both matched
development set perplexity and evaluation set word-error rate
of various trigram and 4-gram language models over several
training set sizes, including our largest training set of 900k sen-
tences/23M words. For Model M, we pick the number of classes
yielding the best performance on the matched development set.
For runs with random initialization, results are averaged over
ten runs. We use the bigram version of IBM classing as is used
in previous work with Model M; and the trigram version of our
new algorithm. We induce classes on the same training set used
to train the associated Model M, unlike in [3] where classes are
trained only on the largest training set.

Focusing on the 4-gram results as these are generally better,
our new classing algorithm outperforms IBM classing with non-
random initialization by 0.7–1.1% absolute in word-error rate.
While gains decrease as training set size increases, we still see
substantial gains on our 23M-word training set. As compared to
a Katz-smoothed word trigram model, the most common base-
line in the literature, we see gains ranging from 2.1–3.0% abso-
lute in word-error rate. To give some idea of training times, our
new algorithm takes 22h on the 23M-word training set with 300
classes on a 2.8GHz Intel Xeon X5560.

6. Discussion
The most closely related previous work is perhaps [2]. The
leaving-one-out method is proposed to estimate the likelihood
of unseen data, and words with few counts are handled by not
allowing them to move during search. However, they found
test set perplexities to be about the same as for IBM class-
ing. In terms of speech recognition word-error rate, the best
previous class-based language modeling results we found are
those of [9]. They propose a multi-classing method;i.e., dif-
ferent word classes are built for each word position. In ex-
periments using a 1.4M word training set from the ATR spo-
ken language database, a trigram multi-class model achieves a
1.0% absolute improvement in word accuracy as compared to
a Katz-smoothed word trigram model. When multi-classing is
combined with the use of compositen-grams (i.e., the concate-
nation of words to form longer units), a total improvement of

Table 2: Matched development set log PP in nats and evaluation
set WER for various trigram and 4-gram language models.

training set (sents.)
1k 10k 100k 900k

log PP WER log PP WER log PP WER log PP WER
Model M, IBM classing, non-random init.

3g 6.152 34.3% 5.121 29.0% 4.511 24.2% 4.172 21.4%
4g 6.162 34.4% 5.110 28.8% 4.446 23.9% 4.019 21.3%

Model M, IBM classing, random init.
3g 6.140 34.7% 5.130 28.9% 4.514 24.3% 4.172 21.5%
4g 6.129 34.8% 5.112 28.9% 4.450 24.1% 4.021 21.2%

Model M, new clustering
3g 5.779 33.3% 5.040 28.0% 4.482 23.6% 4.156 21.1%
4g 5.785 33.3% 5.014 28.0% 4.404 23.2% 3.993 20.6%

wordn-gram, Katz smoothing
3g 6.099 35.5% 5.344 30.7% 4.764 26.2% 4.328 22.7%
4g 6.133 35.6% 5.387 30.9% 4.773 26.3% 4.257 22.7%

wordn-gram, modified Kneser-Ney smoothing
3g 5.908 34.5% 5.199 30.5% 4.641 26.1% 4.244 22.6%
4g 5.905 34.5% 5.178 30.4% 4.580 25.7% 4.106 22.3%

2.2% absolute over the baseline is achieved.
In summary, by adding wordn-gram features to our class-

ing model, we produce word classes that are much more apt
for Model M as compared to IBM classing. The total word-
error rate gain as compared to a Katz-smoothed word trigram
model can be as high as 3.0% absolute, the largest such gain
we are aware of for a class-based language model. In addition,
good word classes have application in a wide range of natural
language processing tasks other than speech recognition. How-
ever, it remains to be seen whether gains will scale to training
sets of hundreds of millions of words and larger.

7. Acknowledgements
This work was funded in part by DARPA under grant HR0011-
06-2-0001. The views, opinions, and findings contained in this
article are those of the authors and should not be interpreted as
representing the official views or policies, either expressed or
implied, of DARPA or the Department of Defense. This doc-
ument was cleared by DARPA: Approved for Public Release,
Distribution Unlimited.

8. References
[1] P. F. Brown, V. J. Della Pietra, P. V. deSouza, J. C. Lai, and R. L.

Mercer, “Class-based n-gram models of natural language,”Comp.
Linguistics, vol. 18, no. 4, pp. 467–479, December 1992.

[2] R. Kneser and H. Ney, “Improved clustering techniques for class-
based statistical language modelling,” inProc. Eurospeech, 1993.

[3] S. F. Chen, “Performance prediction for exponential language mod-
els,” IBM Research, Tech. Rep. RC 24671, October 2008.

[4] ——, “Shrinking exponential language models,” inProc. of
NAACL-HLT, 2009.

[5] S. F. Chen, L. Mangu, B. Ramabhadran, R. Sarikaya, and A. Sethy,
“Scaling shrinkage-based language models,” inProc. ASRU, 2009.

[6] S. F. Chen and S. M. Chu, “A study of word clustering for language
modeling,” IBM Research, Tech. Rep. In preparation, 2010.

[7] S. Martin, J. Liermann, and H. Ney, “Algorithms for bigram and
trigram word clustering,”Speech Comm., vol. 24, no. 1, 1998.

[8] J. G. McMahon and F. J. Smith, “Improving statistical language
model performance with automatically generated word hierar-
chies,”Comp. Linguistics, vol. 22, no. 2, pp. 217–247, 1996.

[9] H. Yamamoto, S. Isogai, and Y. Sagisaka, “Multi-class composite
n-gram language model,”Speech Communication, vol. 41, no. 2-3,
pp. 369–379, 2003.

