EVALUATION METRICSFOR LANGUAGE MODELS
Sanley Chen, Douglas Beeferman, Ronald Rosenfeld*

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

{sf c, dougb, roni }@s. crmu. edu

ABSTRACT

The most widely-used evaluation metric for language models for
speech recognition is the perplexity of test data. While perplex-
ities can be calculated efficiently and without access to a speech
recognizer, they often do not correlate well with speech recognition
word-error rates. In this research, we attempt to find a measure that
like perplexity is easily calculated but which better predicts speech
recognition performance.

We investigate two approaches; first, we attempt to extend perplex-
ity by using similar measuresthat utilize information about language
models that perplexity ignores. Second, we attempt to imitate the
word-error calculation without using a speech recognizer by artifi-
cially generating speechrecognition lattices. To test our new metrics,
we have built over thirty varied language models. We find that per-
plexity correlates with word-error rate remarkably well when only
considering n-gram models trained on in-domain data. When con-
sidering other types of models, our novel metrics are superior to
perplexity for predicting speech recognition performance. How-
ever, we conclude that none of these measures predict word-error
rate sufficiently accurately to be effective tools for language model
evaluation in speech recognition.

1. INTRODUCTION

In the literature, two primary metrics are used to estimate the perfor-
mance of language models in speechrecognition systems. First, they
are evaluated by the word-error rate (WER) yielded when placed in
a speech recognition system. Second, and more commonly, they
are evaluated through their perplexity on test data, an information-
theoretic assessment of their predictive power.

While word-error rate is currently the most popular method for rating
speech recognition performance, it is computationally expensive to
calculate. Furthermore, its calculation generally requires access
to the innards of a speech recognition system, few of which are
publically available. Finally, word-error rate is speech-recognizer-
dependent, which makes it difficult for different research sites to
compare language models with this measure.

Perplexity, on the other hand, can be computed trivially and
in isolation; the perplexity PP(pas) of a language model

*This work was supported by the National Security Agency under grants
MDA904-96-1-0113 and M DA904-97-1-0006 and by the DARPA AASERT
award DAAHO04-95-1-0475. The views and conclusions contained in this
document are those of the authors and should not be interpreted as represent-

ing the offi cial policies, either expressed or implied, of the U.S. government.

pa(next word w|history h) on atestset 7' = {ws, ..., w:} is just

1

PPr(pm) = -
(Hz‘:lpM(wi|wl' o ’wz‘—l))

@

=

or the inverse of the (geometric) average probability assignedto each
word in the test set by the model. Perplexity is theoretically elegant
as its logarithm is an upper bound on the number of bits per word
expected in compressing (in-domain) text employing the measured
model. Unfortunately, while language models with lower perplexi-
ties tend to have lower word-error rates, there have been numerous
examples in the literature where language models providing a large
improvement in perplexity over a baseline model have yielded little
or no improvement in word-error rate [1, 2]. In addition, perplexity
is inapplicable to unnormalized language models (i.e., models that
are not true probability distributions that sum to 1), and perplexity
is not comparable between language models with different vocabu-
laries. In this research, we attempt to find a measure for evaluating
language models that is applicable to unnormalized models and that
predicts word-error rate more accurately than perplexity but which,
like perplexity, is computationally inexpensive and can be computed
separately from a speech recognition system. We consider two dif-
ferent approaches to this task.

Our first approach involves extending perplexity to utilize informa-
tion that it previously ignores. As can be seen from equation (1),
perplexity depends only on the probabilities assigned to actual text.
However, word-error rate depends on the probabilities assigned to
all transcriptions hypothesized by a speech recognizer; errors occur
when an incorrect hypothesis has a higher score than the correct
hypothesis. We consider metrics that harness this information.

Our second approach involves an attempt to mimic the process of
calculating word-error rate through lattice rescoring, without actually
using a speech recognition system to construct lattices. Instead, we
artificially generate lattices and evaluate language models through
their word-error rates on these artificial lattices.

To evaluate our novel language model measures, we have constructed
over thirty language models of varying types, including class n-
gram[3, 4], trigger[5], and cache[6] language models. We find that
perplexity correlates with word-error rate remarkably well when
only considering n-gram models trained on in-domain data. When
considering other types of models, our novel metrics are superior
to perplexity for predicting speech recognition performance. How-
ever, we conclude that none of these measures predict word-error
rate sufficiently accurately to be effective tools for language model
evaluation in speech recognition.

1.1. Previous Work

lyer et al.[2] investigate the prediction of speech recognition perfor-
mance for language models in the Switchboard domain, for trigram
models built on differing amounts of in-domain and out-of-domain
training data. Over the ten models they constructed, they find that
perplexity predicts word-error rate well when only in-domain train-
ing data is used, but poorly when out-of-domain text is added. They
find that trigram coverage, or the fraction of trigrams in the test data
present in the training data, is a better predictor of word-error rate
than perplexity. However, it is unclear how to extend n-gram cov-
erage to comparing other types of models, such as class models or
n-gram models of different order. In addition, this measure cannot
distinguish between different models trained on the same data.

They also present techniques for building a decision tree that predicts
the relative performance of two models on each word in a test set.
Using this decision tree, they are able to predict with high accuracy
the relative performance of pairs of trigram models. While this tech-
nique seems promising, the features used to build the tree include
lexical information such as part-of-speech information and the pho-
netic lengths of words. In this work, we would like to investigate
what is possible with measures like perplexity that ignore detailed
lexical information.

1.2. Methodology

Inthis research, we investigate speech recognition performance in the
Broadcast News domain. We generated narrow-beam lattices with
the Sphinx-I11 recognition system[7] using a trigram model trained
on 130M words of Broadcast News text; trigrams occurring only
once were excluded from the model. The word-error rates reported
in this work were calculated by rescoring these lattices with the given
language model.

We created 35 language models, which we divided into two sets. Set
A contains only n-gram models built on Broadcast News training
data. The training set size, smoothing, n-gram order, and n-gram
cutoffs were varied. Set B contains various kinds of models, includ-
ing n-gram class models, trigram models enhanced with a cache or
triggers, n-gram models built on out-of-domain data, and models
that are an interpolation of n-gram models built on in-domain and
out-of-domain data. In Table 1, we list the language models in each
set. The held-out and test sets consist of 22,000 and 28,000 words,
respectively, of Broadcast News data.

2. PERPLEXITY AND WORD-ERROR
RATE

In Figure 1, we display a graph of word-error rate versus log per-
plexity for each of the models in sets A and B. The linear correlation
between word-error rate and log perplexity seems remarkably strong
for the models in set A, which consists of only n-gram models built
on in-domain data, but less so for the models in set B, which is a
more disparate collection of models. This indicates that log perplex-
ity may be a good predictor of speech recognition performance when
considering only particular types of models.

It seems somewhat surprising that log perplexity, which is measured
in bits (recall the information theoretic interpretation of perplexity
mentioned in Section 1), is correlated with the very different unit of
word errors. To attempt to shed light on why these two apparently
unrelated quantities are related, in Figure 2 we graph the relation-

set A set B

data | smooth n | description
n | (wds) | alg 2 | class n-gram model
1 5M | K-N[8] 3 | class n-gram model
2 5M | K-N 4 | class n-gram model
3 5M | K-N 3 | trigram model + cache 1
4 5M | K-N 3 | trigram model + cache 2
5 5M | K-N 3 | trigram model, Katz
3 5M | Katz[9] 3 | Katz model + triggers 1
3 5M | poor 3 | Katz model + triggers 2
3 10M | poor 2 | AP news training data
3 25M | poor 3 | AP news training data
3 5M | K-N (i) 4 | AP news training data
3 5M | K-N (ii) 2 | Switchboard (SWB) data
3 IM | K-N 3 | Switchboard data
3 25M | K-N 4 | Switchboard data
3 | 130M | K-N 3 | AP and BN models mixed
2 10M | K-N 4 | AP and BN models mixed
2 25M | K-N 3 | SWB and BN models mixed
2 | 130M | K-N 4 | SWB and BN models mixed

Table 1: Language models in sets A and B. The n column describes
the order of the n-gram model (e.g., unigram or bigram). The data
column describes the size of the training set used. In set A, the
model labeled (i) excludes all bigrams and trigrams with only one
count; the model labeled (ii) excludes all bigrams and trigrams with
two or fewer counts. The abbreviation K-N stands for Kneser-Ney.
The smoothing method poor is an algorithm specially designed to
perform poorly. In set B, all models are trained on 5M words of
data, have no n-gram cutoffs, and are smoothed with Kneser-Ney
smoothing except where otherwise specified.

ship between the language model probability assigned to a word in
a test set and the chance that word is transcribed correctly in speech
recognition. The dotted lines represent curves for each of the in-
dividual models in sets A and B. To generate each curve, we first
calculated the probability assigned by the given model to each word
in our held-out set, and placed these words in logarithmically-spaced
buckets based on these probabilities. Then, from the corresponding
speech recognition run we used NIST’s sclite software to mark each
word in the held-out set as correct or incorrect. Finally, we calculated
the fraction of words in each bucket that are correct or incorrect.

To relate log perplexity and word-error rate, consider approximating
the curves in Figure 2 as a straight line, i.e.,

pum(wis correct) = a1 logpar(w|h) + a2

for all models M for some constants a; and a2, where pas(w|h)
denotesthe language model probability assignedto word w by model
M given history k. Then, for a test set 7' = {w1,...,w:} the
expected word accuracy is

t
% Z [a110g pas(wilhi) + az]
i=1

= —azlog PPT(pM) + a2

t
% ZpM('w¢ is correct)
i=1

i.e., the expected word accuracy is a linear function of the perplexity.
If we make the approximation that word-error rate is a linear function

50 | °
48 L 4
@ 46 1
B
5 M 1
o]
S a2+ 1
=]
E w0 | . ° i
o o
38 A .
$
36 . 9
7 75 8 85 9 95 10
log2 perplexity
setB
45 T T
a4 - "
43 + . 1
@ a2 1
® +
5 41 + b
o
T 40 1 . . . il
+ +
= 39 . 1
B 1
o
37+ L i
36

72 74 76 78 8 82 84 86 88 9
log2 perplexity

Figure 1: Word-error rate vs. log perplexity

of word accuracy, then we have that word-error rate is also a linear
function of perplexity.

This analysis, while very rough, does lend some insight as to why
perplexity and word-error rate are at all related, and suggests where
perplexity might be improved and where the perplexity-WER rela-
tionship might break down. For example, it is clear that the linear
approximation is poor for very low probabilities, where the proba-
bility of correctness is predicted to be less than zero.

3. EXTENDING PERPLEXITY

3.1. Modeling the Relation between Language
Model Probability and Word Accuracy

One natural technique to try given the analysis in Section 2 is to use
the functions displayed in Figure 2 to estimate word-error rate. That
is, since our use of log perplexity to predict word-error rate can be
viewed as being based on a hypothesis that these functions are linear,
we might do better with an empirically-estimated function. To im-
plement this technique, for each model we calculated the probability
assigned to each word in our test set and placed these words into
log-spaced buckets based on these probabilities. We calculated the
average over all curves in Figure 2 to estimate the fraction of words
correct in each bucket, and collated results over all buckets to get a
final estimate of word accuracy. We subtract from 1 to produce an
estimate of word-error rate, and call this measure M-ref. We graph
this value versus real word-error rate in Figure 3 for set B.

0.9

0.8

0.7

0.6

0.5

0.4

probability of being correct

03

02
1le-07 1le06 1le05 00001 0001 0.01 0.1 1
language model probability of word

Figure 2: Probability of a word being correct in speech recognition
given its language model probability. Each line represents one of the
language models in sets A and B.

To quantify the correlation between different metrics with word-error
rate, we calculate the linear correlation coefficient (or Pearson’s r)
measuring the degree of linear correlation; the Spearman rank-order
correlation coefficient measuring how well the ranks of models lin-
early correlate; and Kendall’s 7 measuring how well the relative
performance of pairs of models is predicted. In Table 2, we display
these correlations for perplexity and M-ref versus word-error rate.
For set A, perplexity correlates with word-error rate better than mea-
sure M-ref according to all three measures, while for set B measure
M-ref is marginally better.

3.2. Using Additional Information

Perplexity and M-ref depend only on the probabilities of words in
the test set, which in speech recognition is simply the reference tran-
script. However, word-error rate depends also on the probabilities
assigned to incorrect hypotheses; in particular, errors occur when an
incorrect hypothesis outscores the correct hypothesis. For example,
it seems intuitive that errors are more likely to occur when many
incorrect words are assigned large language model probabilities.

42 g

41t .

40 | 4

word-error rate

f 1
st . 1

37 L +]

36
0.255 0.26 0.265 0.27 0.275 0.28 0.285
measure M-ref

Figure 3: Word-error rate vs. measure M-ref on set B

set A set B
linear | rank | pair | linear | rank | pair
PP 099 | 097 | 088 | 092 | 0.80 | 0.69
M-ref | 094 | 0.80 | 0.68 | 0.93 | 0.86 | 0.69

Table 2: Correlations of perplexity and measure M-ref with word-
error rate

We considered two methods for estimating the effect of overall lan-
guage model probabilities on word-error rate: first, we examined
the relationship between the absolute language model probability
assigned to a word and the frequency with which that word occurs
as an error in speech recognition; and secondly, we examine this
relationship except using the relative language model probability of
a word as compared to the probability assigned to the correct word.
When we say a word occurs as an error, we mean that the word oc-
curred in the transcription hypothesized by the speech recognizer but
was marked as incorrect in word-error rate scoring. It is likely that
both absolute and relative probabilities are relevant in determining
how frequently a word occurs as an error: if the correct hypothe-
sis has a very high score, then relative probability is probably more
important; otherwise, absolute probability may play a larger role.

To estimate the relation between absolute probability and error fre-
quency, we calculated the language model probability assigned to
each word in the hypothesis for each utterance in our held-out set.
We placed each word deemed incorrect by sclite in logarithmically-
spaced buckets according to language model probability, to find the
frequency of errors in each bucket. To estimate the frequency of
words occurring in each bucket in the language model, we evaluated
the given language model over all words in the vocabulary over our
held-out set; i.e., for held-out data 7' = {w1, ..., w:} we evaluated
probabilities of the form p(w|w:---w;_1) forall i € {1,...,¢}
and all words w. Dividing the errors per bucket by the total number
of words in each bucket yields an estimate of the probability of a
word occurring as an error given its language model probability; this

1

0.1
g
2 001
g
S oo
8
5 00001
=
8 1e05
e
o
1e-06
1607 ‘ ‘ ‘ ‘ ‘
1e06 1e05 00001 0001 001 01 1

language model probability of word

Figure 4: Relation between language model probability of a word
and the frequency with which the word occurs as an error. Each line
represents one of the language models in sets A and B.

10

l L

5 [
z 01
3 001 |
S 0001 F
Q
8
5 00001 |
>
S 1e05f
2
Q
S 1e06
o

1607 F]

1le-08

1le07 1le05 0001 0.1 10 1000 100000 1e+07
language model probability of word relative to correct word

Figure 5: Relation between language model probability of a word
relative to the correct word and the frequency with which the word
occurs as an error

quantity is graphed in Figure 4. The different lines correspond to
each individual model. It is interesting to note the small variation
between the curves for each model, as well as the linearity of the
curves as plotted in log-log scale.

To estimate the relation between relative probability and error fre-
quency, we used a similar procedure as for absolute probability ex-
cept that in each step, instead of bucketing by absolute probability
we bucket by the ratio between the probability of the given word
and the “correct” word. In order to determine the “correct” word,
we only consider substitution errors in this analysis. In calculating
the language model probability of the correct word, we use the same
history as was used to calculate the language model probability of
the given word. Then, using a similar procedure as was described
above, we produce the graph displayed in Figure 5. Again, the curves
are quite linear (in log-log space) and tightly packed, though not as
tightly as in the previous graph.

We can use these graphs to create new metrics that approximate
word-error rate. Since this information is largely orthogonal with
perplexity, it may be possible to combine the two to achieve a stronger
metric. We have yet to explore this avenue.

4. ARTIFICIAL LATTICES

Instead of predicting speech recognition performance by examining
basic features of a language model such as perplexity, another ap-
proach is to attempt to mimic the process of calculating word-error
rate, except without using a speech recognizer. In this section, we
discuss methods for artificially generating speech recognition lat-
tices. Word-error rates calculated on these artificial lattices can be
used to evaluate language models, and we describe a method for
constructing lattices such that these artificial word-error rates cor-
relate well with word-error rates calculated on genuine lattices. In
addition, the lattices constructed are very narrow, so that artificial

Lt is unclear how to count how often a word occurs in each bucket;
e.g., during speech recognition, language model probabilities for aword may
be estimated multiple times at each position in the utterance with different
histories. For the purposes of this calculation, we pretend that a total of
|V'| words “occur” at each word position in an utterance where V' is the
vocabulary used, and normalize accordingly.

supper her pick

Figure 6: An example artificial lattice for the utterance yo yo yo

word-error rates can be calculated quickly.

In generating lattices, we have made several simplifying assump-
tions, and have found that the method still works well. First, we
assume that the correct hypothesis is always in the lattice. Secondly,
we assume that all words in a lattice are perfectly time-aligned with
the correct hypothesis; i.e., all words in a lattice have the same begin
and end times as aword in the correct hypothesis— only substitution
errors are considered. One advantage of this assumption is that all
hypotheses are the same length in words, and an insertion penalty
has no effect and can be ignored. Thirdly, we assume that there will
be a few words that will be acoustically confusable with each word
in the correct hypothesis, and that these words will have the same
acoustic score as the correct word. This is equivalent to only includ-
ing “acoustically confusable” words at each position in the lattice,
and setting all acoustic scores to zero. With this assumption, the
language weight becomes irrelevant since all hypotheses have the
same acoustic score.

Our algorithm for generating a lattice on a test-set utterance is as
follows. We begin with a lattice that just contains the correct path.
The start frames and end frames of each word are unimportant, since
all words in the lattice will be time-aligned. Then, for each word in
the utterance, we randomly generate (according to a distribution to
be specified) &£ words that occur in the same position (i.e., have the
same begin and end times). Typically, we have taken & to be about 9.
All acoustic scores are set to zero. In Figure 6, we show an artificial
lattice for the utterance yo yo yo with k = 2.

To generate the words that are “acoustically confusable” with each
word in the utterance, one possibility is to determine which words are
acoustically nearby. However, we make the assumption that whether
we choose random words or genuinely acoustically confusable words
will not affect word-error rate, and use a single probability distribu-
tion to generate alternatives for all words. One distribution that
seems reasonable to use is the unigram distribution py(w), which
just reflects the frequency of words w in the training text. We have
found empirically that distributions of the form py (w)“ produce lat-
tices that do well in predicting actual word-error rate, where the value
a = 0.5 has worked well in both Broadcast News and Switchboard
experiments.

Using the value &k = 9, we generated artificial lattices over our entire
test set. We calculated word-error rates on these artificial lattices for
all of our models in sets A and B, and in Figure 7 we display a graph
of artificial word-error rate vs. actual word-error rate over these
models. In Table 3, we display the correlation between artificial
word-error rate and actual word-error rate. Perplexity is marginally
better on set A, but artificial word-error rate is substantially superior
on set B, the motley mix of models.

We have also performed experiments on the Switchboard task us-
ing lattices generated by the Janus speech recognition system[10].

52

46 t .

42t .

real word-error rate

36 o b

15 20 25 30 35 40 45 50
artificial word-error rate

set B

42t .

41t .

real word-error rate

39+ b

36

20 22 24 26 28 30 32 34
artificial word-error rate

Figure 7: Actual word-error rate vs. artificial word-error rate for
models in sets A and B

Generating artificial lattices with the values & = 3 and o« = 0.5,
we compared the correlation between perplexity and artificial word-
error rate with actual word-error rate over nine n-gram models. The
n-gram models were built with varying training data sizes, count
cutoffs, smoothing, and n-gram order. In Table 3, we display the
correlations for perplexity and artificial word-error rate; artificial
word-error rate is superior on this data set.

In terms of computation, we compare the different metrics through
the language model probability evaluations required per word in the
test set. Perplexity requires only one language model evaluation per

Broadcast News

set A set B
linear | rank | pair | linear | rank | pair
PP 099 | 097 | 088|092 | 0.80 | 0.69
AWER | 099 | 096 | 086 | 0.96 | 0.86 | 0.74
Switchboard
linear | rank | pair
PP 0.85 | 0.73 | 0.56

AWER | 0.93 0.83 | 0.67

Table 3: Correlations of perplexity and artificial word-error rate with
actual word-error rate

word, and is by far the most efficient. For a trigram model, artificial
word-error rate requires at most &* language model evaluations per
word; in practice, the actual value was about 300 for £ = 9. Thetime
required to rescore artificial lattices on our 22,000 word held-out set
on a 300 Mhz Pentium Il machine ranged from 2 minutes for a trigram
model to 33 minutes for a trigram model with triggers. Rescoring
actual lattices with a trigram model required about 3600 language
model evaluations per word. The computation time required varied
from 1.6 hours for a trigram model to 18.2 hours for a trigram model
with triggers. Thus, calculating artificial word-error rate, while
significantly more expensive than calculating perplexity, is still much
less expensive than rescoring genuine lattices and the absolute times
involved are quite reasonable.

5. DISCUSSION

In this work, we have shown that perplexity can predict word-error
rate quite well for conventional n-gram models trained on in-domain
data. However, for models of a more disparate nature, perplexity
is a poorer predictor. We have developed a measure, M-ref, that
extends perplexity and better predicts word-error rate for complex
language models. We have also described a technique for generating
artificial lattices such that word-error rates calculated on these lattices
correlate with actual error rates better than perplexity. The error-rate
calculation over these lattices is quite inexpensive.

Despite this work, it is still unclear whether perplexity or our novel
evaluation metrics are effective tools for language modeling re-
searchers. Perplexity has been a popular comparison measure his-
torically because it allows language model research to develop in
isolation from speech recognizers, and it has many theoretically el-
egant properties. Unfortunately, this modularization of language
modeling is justified only if our isolated measures can predict ap-
plication performance accurately enough. While perplexity is an
indication of performance in the application of text compression, it
has been shown to be inadequate in predicting speech recognition
performance. For example, one basic criterion of a language model
evaluation metric is that it can distinguish between language models
whose application performances are significantly different. A word-
error rate difference of 0.5% or 1.0% absolute is often considered
significant; if we refer to Figure 1, we find models with essentially
the same perplexity that differ by more than 1.0% in error rate. This
property is also true of the novel evaluation metrics that we have
described. In practice, during language model development for the
Hub 4 evaluations we have discontinued calculating perplexities and
instead calculate word-error rates directly to decide whether any
changes are useful. Experience has dictated that this is the most
effective course of action.

We consider it unlikely that any accurate measure can be developed
that, like perplexity, is based only on language model features. This is
because a great many factors affect speech recognition performance:
the values of the language weight and insertion penalty; the search
algorithm used (search algorithms for long-distance models tend to
be less effective); the stage at which the language model is applied
(decoding, lattice rescoring, or n-best list rescoring); the language
models used in the other stages; and the interaction of the language
model with the acoustic model. All of these factors significantly
impact recognition performance, and it is unclear how any metric
that is blind to these factors could compensate for their effects.

Measures that imitate the speech-recognition process can abstract
over many of these issues. For example, in artificial lattice genera-

tion, the search algorithm is not an issue if we assume different search
algorithms over artificial lattices cause the same variation in perfor-
mance as in real lattices. If we have acoustic scores in our artificial
lattices, then we can optimize language weights over artificial lattices
just as in real lattices. However, as measures become more complex
and expensive to compute, calculating word-error rates directly will
become a more attractive alternative.

In conclusion, existing measures such as perplexity or our novel mea-
sures are not accurate enough to be effective tools in language model
development for speech recognition, and it is unclear how useful it
is to continue to compare language models for speech recognition
using perplexity. While this leaves researchers with the unpleasant
requirement that they compare language models only with respect to
the same speech recognizer, it does not seem there is a reasonable
alternative unless more effective measures are developed. There are
techniques for making word-error rate computation less expensive,
such as n-best list rescoring or lattice rescoring with narrow-beam
lattices, and such techniques are in common use in practice. Indeed,
to move solely to word-error rate reporting just mirrors the decision
made long ago in acoustic modeling, that acoustic models can only
be accurately judged in the context of a speech recognition system.

References

1. S.C. Martin, J. Liermann, and H. Ney. Adaptive topic-
dependent language modelling using word-based varigrams.
In Proceedings of Eurospeech 97, 1997.

2. R. lyer, M. Ostendorf, and M. Meteer. Analyzing and predict-
ing language model improvements. In Proceedingsof the IEEE
Workshop on Automatic Speech Recognition and Understand-
ing, 1997.

3. Peter F. Brown, Vincent J. Della Pietra, Peter V. deSouza, Jen-
nifer C. Lai, and Robert L. Mercer. Class-basedn-gram models
of natural language. Computational Linguistics, 18(4):467—
479, December 1992.

4. Hermann Ney, Ute Essen, and Reinhard Kneser. On structur-
ing probabilistic dependencesin stochastic language modeling.
Computer, Speech, and Language, 8:1-38, 1994.

5. D. Beeferman, A. Berger, and J. Lafferty. A model of lexical
attraction and repulsion. In Proceedings of the ACL, Madrid,
Spain, 1997.

6. R. Kuhn and R. De Mori. A cache-based natural language
model for speech reproduction. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 12(6):570-583, 1990.

7. P. Placeway, S. Chen, M. Eskenazi, U. Jain, V. Parikh,
B. Raj, M. Ravishankar, R. Rosenfeld, K. Seymore, M. Siegler,
R. Stern, and E. Thayer. The 1996 Hub-4 Sphinx-3 system.
In Proceedings of the DARPA Speech Recognition Workshop,
February 1997.

8. Reinhard Kneser and Hermann Ney. Improved backing-off
for m-gram language modeling. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing, volume 1, pages 181-184, 1995.

9. Slava M. Katz. Estimation of probabilities from sparse data
for the language model component of a speech recognizer.
IEEE Transactions on Acoustics, Speech and Signal Process-
ing, ASSP-35(3):400-401, March 1987.

10. Ivica Rogina and Alex Waibel. The Janus speech recognizer.
In ARPA SLT Workshop, 1995.

