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Abstract

We investigate the task of performance prediction for language models belonging to the
exponential family. First, we attempt to empirically discover a formula for predicting test set
cross-entropy forn-gram language models. We build models over varying domains, data set
sizes, andn-gram orders, and perform linear regression to see whether we can model test set
performance as a simple function of training set performance and various model statistics. Re-
markably, we discover a very simple relationship that predicts test performance with a correla-
tion of 0.9996. We provide analysis of why this relationship holds, and show how this relation-
ship can be used to motivate two heuristics for improving existing language models. We use the
first heuristic to develop a novel class-based language model that outperforms a baseline word
trigram model by up to 28% in perplexity and 2.1% absolute in speech recognition word-error
rate on Wall Street Journal data. We use the second heuristic to provide a new motivation for
minimum discrimination information (MDI) models (Della Pietra et al., 1992), and show how
this method outperforms other methods for domain adaptation on a Wall Street Journal data set.

1 Introduction

In this paper, we investigate the following question for language models belonging to the expo-
nential family: given some training data and test data drawn from the same distribution, can we
accurately predict the test set performance of a model estimated from the training data? This prob-
lem is known asperformance predictionand is useful formodel selection, the task of selecting the
best model from a set of candidate models given data.

Let us first define some notation and terminology. Events in our data have the form(x, y), where
we attempt to predict the current wordy given previous wordsx. We denote the training dataD as

D = (x1, y1), . . . , (xD, yD) (1)

and definẽp(x, y) to be the empirical distribution of the training data:

p̃(x, y) =
countD(x, y)

D
=
|{d : (xd, yd) = (x, y)}|

D
(2)

Similarly, we have a test setD∗ and an associated empirical distributionp∗(x, y). We take the
performance of a conditional language modelp(y|x) to be the cross-entropyH(p∗, p) between the
empirical test distributionp∗ and the modelp(y|x):

H(p∗, p) = −
∑
x,y

p∗(x, y) log p(y|x) (3)
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This is equivalent to the negative mean log-likelihood per event, as well as to log perplexity.
We only consider models in the exponential family. An exponential modelpΛ(y|x) is a model

with a set offeature functionsF = {f1(x, y), . . . , fF (x, y)} and equal number of parameters
Λ = {λ1, . . . , λF } where

pΛ(y|x) =
exp(

∑F
i=1 λifi(x, y))
ZΛ(x)

(4)

and whereZΛ(x) is a normalization factor defined as

ZΛ(x) =
∑
y′

exp(
F∑

i=1

λifi(x, y′)) (5)

One of the seminal methods for performance prediction is the Akaike Information Criterion
(AIC) (Akaike, 1973). LetΛ̂ be the maximum likelihood estimate ofΛ for a model on some
training data. Akaike derived the following estimate for the expected value of the test set cross-
entropyH(p∗, pΛ̂):

H(p∗, pΛ̂) ≈ H(p̃, pΛ̂) +
F

D
(6)

H(p̃, pΛ̂) is the cross-entropy of the training set,F is the number of parameters in the model, and
D is the number of events in the training data. Since Akaike’s original paper, many refinements
and variations of this criterion have been developed,e.g., (Takeuchi, 1976; Hurvich and Tsai, 1989;
Lebreton et al., 1992), and these methods remain popular today (Burnham and Anderson, 2002).
However, maximum likelihood estimates for language models typically yield infinite cross-entropy
on test data, and thus AIC behaves poorly for these domains.

In this work, instead of deriving a performance prediction relationship theoretically, we attempt
to empirically discover a formula for predicting test performance. Initially, we consider onlyn-
gram language models, and build models over varying domains, data set sizes, andn-gram orders.
We perform linear regression to discover whether we can model test set cross-entropy as a simple
function of training set cross-entropy and other model statistics. For the 200+n-gram models we
evaluate, we find that the empirical relationship

H(p∗, pΛ̃) ≈ H(p̃, pΛ̃) +
γ

D

F∑
i=1

|λ̃i| (7)

holds with a correlation of 0.9996 whereγ is a constant and wherẽΛ = {λ̃i} are regularized
estimatesof the parameters;i.e., rather than estimating model performance for maximum likelihood
models as in AIC, we attempt to estimate performance for regularized models. In other words, test
set cross-entropy can be approximated by the sum of the training set cross-entropy and the scaled
sum of the magnitudes of the model parameters.

To maximize the correlation achieved by eq. (7), we find that it is necessary to use the same
regularization method and regularization hyperparameters across models and that the optimal value
of γ depends on the values of the hyperparameters. Consequently, we first evaluate several types
of regularization and find which of these (and which hyperparameter values) work best across all
domains, and use these values in all subsequent experiments. While`2

2 regularization gives the best
performance reported in the literature forn-gram models, we find here that`1 + `2

2 regularization
works even better.

Using eq. (7), we analyze the use of backoff features inn-gram models. AIC predicts that back-
off features should degrade test performance since the maximum likelihood training performance is
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unchanged, while the number of parameters is increased. In fact, backoff features improve test per-
formance a great deal and we show how this can be explained using eq. (7). In particular, we find
that backoff features improve test performance by reducing the “size” of the model1

D

∑F
i=1 |λ̃i|

rather than by improving training set performance. This suggests the following method for im-
proving an existing language model: if the model can be “shrunk” without increasing its training
cross-entropy, test cross-entropy will improve.

We then apply this technique to motivate two language models: a novel class-based language
model and minimum discrimination information (MDI) models for domain adaptation (Della Pietra
et al., 1992). We show how these models outperform other models in both perplexity and in speech
recognition word-error rate on Wall Street Journal data. Furthermore, we show that eq. (7) pre-
dicts test performance accurately not only for wordn-gram models, but for these other types of
exponential models as well.

The organization of this paper is as follows: In Section 2, we evaluate various regularization
techniques forn-gram models and select the method and associated hyperparameters that work best
across all domains under consideration. In Section 3, we discuss our experiments to find a formula
for predictingn-gram model performance, and provide an explanation for why eq. (7) can predict
performance so well. In Section 4, we analyze the use of backoff features inn-gram models and
motivate a heuristic for model design. In Sections 5 and 6, we introduce our novel class-based
model and discuss MDI domain adaptation, and compare these methods against other techniques on
Wall Street Journal data. Finally, in Sections 7 and 8 we talk about related work and present some
conclusions.

2 Selecting a Regularization Method and Regularization Hyperpa-
rameters

In Section 3, we will attempt to discover a formula for performance prediction for regularizedn-
gram models. In this section, we address the issue of how exactly should we perform regularization
in these later experiments. As mentioned in the introduction, we will find that performance predic-
tion works best if we use the same regularization method and hyperparameters for all models under
consideration, and so we attempt to find a regularization method and associated hyperparameters
that perform well across many domains.

Following the terminology used by Dudı́k and Schapire (2006), the most widely-used and ef-
fective methods for regularizing exponential models are`1 regularization (Tibshirani, 1994; Khu-
danpur, 1995; Williams, 1995; Kazama and Tsujii, 2003; Goodman, 2004) and`2

2 regularization
(Hoerl and Kennard, 1970; Lau, 1994; Chen and Rosenfeld, 2000; Lebanon and Lafferty, 2001). In
these methods, we have a prior distribution over parametersΛ and choose the maximuma posteriori
(MAP) parameter estimates given this prior. For`1 regularization, a Laplace prior is chosen; this
translates to selectingΛ to optimize the objective function

O`1(Λ) = H(p̃, pΛ) +
α

D

F∑
i=1

|λi| (8)

The first term on the right is the cross-entropy of the training set and the second term penalizes large
λi values. For̀ 2

2 regularization, a Gaussian prior is chosen and the penalty term is quadratic inΛ:

O`22
(Λ) = H(p̃, pΛ) +

1
2σ2D

F∑
i=1

λ2
i (9)
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Here, we omit the constant term corresponding to the prior normalization factor, and assume a
single global hyperparameter (α or σ) is used rather than feature-specific hyperparameters.1 While
`2
2 regularization has been shown to be superior in language modeling (Chen and Rosenfeld, 2000;

Goodman, 2004),̀1 regularization performs better in many other domains,e.g., (Ng, 2004).
While not as commonly used, another regularization scheme that has been shown to be effective

for exponential models is2-norm inequalityregularization (Kazama and Tsujii, 2003) which is
an instance of̀ 1 + `2

2 regularization as noted by Dudı́k and Schapire (2006). The corresponding
objective function is

O`1+`22
(Λ) = H(p̃, pΛ) +

α

D

F∑
i=1

|λi|+
1

2σ2D

F∑
i=1

λ2
i (10)

Note that`1 regularization can be considered a special case of this (by takingσ = ∞) as caǹ 2
2

regularization (by takingα = 0).
In this section, we evaluatè1, `2

2, and`1+`2
2 regularization for exponentialn-gram models.2 We

define an exponentialn-gram model on a training set as in (Chen and Rosenfeld, 2000). We assume
raw text data consists of a sequence of sentences of the formw1 · · ·wl. For each sentence, we
generatel+1 events of the form(x, y) wherey = wj andx = wj−n+1 · · ·wj−1 for j = 1, . . . , l+1.
We takewl+1 to be a distinguished end-of-sentence token andwj for j < 1 to be a distinguished
beginning-of-sentence token (Chen and Goodman, 1998). We say ann-gramω occurs in the training
data ifω is a suffix ofxy for some event(x, y) in the training data. Then, an exponentialn-gram
model is an exponential model that has a featurefω for eachn′-gramω occurring in the training
data forn′ ≤ n where

fω(x, y) =

{
1 if xy ends inω
0 otherwise

(11)

We would like to find the regularization method and associated hyperparameters that work best
across different domains, training set sizes, andn-gram orders. As it is computationally expensive
to evaluate a large number of hyperparameter settings over a large collection of models, we divide
this search into two phases. First, we evaluate a large set of hyperparameter settings on a limited set
of models to come up with a short list of candidate hyperparameter values. We then evaluate these
candidates on our full set of models to find the best one.

2.1 Finding a Small Set of Candidate Hyperparameters

We buildn-gram models over data from five different sources and consider three different vocabu-
lary sizes for one of these sources, giving us seven “domains” in total. We refer to these domains by
the lettersA–G. The domainsC–G consist of regular text data tokenized as words, while domainsA
andB consist of letter and part-of-speech sequences, respectively.

domain A Letter sequences corresponding to word spellings from a version of the Random House
(RH) dictionary.

1In past work, feature-specific hyperparameters have failed to improve performance over using a single global hyper-
parameter;e.g., (Lau, 1994; Kazama and Tsujii, 2003).

2We also considered adding a constant penalty for each feature with nonzeroλ̃i, which can be viewed as̀0 + `1 + `22
regularization. With this modification, the training objective function is no longer convex inΛ and we devised a greedy
estimation algorithm for finding a local optimum in the search space. However, in limited trials, we found a penalty of
zero gives the best test performance among the nonnegative penalties we evaluated. Consequently, we decided not to
pursue this avenue further.
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data token range training avg. sent. vocab.
domain source type ofn sents. length size

A RH letter 2–7 100–75k 8.1 27
B WSJ POS 2–7 100–30k 23.9 45
C WSJ word 2–5 100–100k 25.8 300
D WSJ word 2–5 100–100k 25.8 3k
E WSJ word 2–5 100–100k 25.8 21k
F BN word 2–5 100–100k 15.3 84k
G SWB word 2–5 100–100k 11.9 19k

Table 1: Statistics of data sets used in Sections 2 and 3 and elsewhere. For domainA, a “sentence”
is a single word spelling.

candidate(α, σ2) values
`1 (0.7,∞), (0.8,∞), (0.9,∞), (1.0,∞), (1.1,∞), (1.2,∞)
`2
2 (0, 1), (0, 1.2), (0, 1.5), (0, 2), (0, 2.5), (0, 3), (0, 4), (0, 5)

`1 + `2
2 (0.5, 5), (0.5, 6), (0.5, 7), (0.6, 7), (0.6, 8), (0.6, 10)

Table 2: Best hyperparameter settings found in Section 2.1 for each regularization method.

domain B Part-of-speech (POS) sequences corresponding to sentences from tagged Wall Street
Journal (WSJ) text from the Penn Treebank 3 (Marcus et al., 1993).

domainsC–E 1993 Wall Street Journal text with verbalized punctuation from the CSR-III Text
corpus from the Linguistic Data Consortium. These three domains differ only in vocabulary.
In domainsC andD, the vocabulary consists of the 300 and 3000 most frequent words, re-
spectively, in our entire WSJ data set. In domainE, the vocabulary consists of the union of the
training vocabulary and 20k word “closed” test vocabulary from the first Wall Street Journal
Continuous Speech Recognition (CSR) corpus (Doddington, 1992; Paul and Baker, 1992).

domain F 1997 Broadcast News (BN) text (Graff, 1997). An internal IBM vocabulary is used.

domain G Switchboard (SWB) text (Godfrey et al., 1992). The vocabulary consists of all words
occurring at least twice in the entire data set.

We provide summary statistics for each domain in Table 1. For each domain, we first take all of our
data and randomize the order of sentences in that data. We partition off two development sets and
an evaluation data set (5000 “sentences” each in domainA and 2500 sentences elsewhere) and use
the remaining data as training data. In this way, we assure that our training and test data are drawn
from essentially the same distribution as is assumed in our experiments for performance prediction.
Training set sizes in sentences are 100, 300, 1000, 3000, etc., up to the maximums given in Table 1.

For each domain, we choose several “representative” training set sizes andn-gram orders from
the range of values given in Table 1, amounting to 57 models in total over the seven domains. For
each of these models, we estimate parameters using`1+`2

2 regularization over many different values
of the hyperparameters(α, σ2). In particular, we perform a grid search, trying each value

α ∈ {0.0, 0.1, 0.2, . . . , 1.2} (12)
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with each value
σ2 ∈ {1, 1.2, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 10,∞}, (13)

giving us13× 13 = 169 hyperparameter settings in all for each model. Recall that settingσ = ∞
corresponds tò1 regularization and thatα = 0 corresponds tò2

2 regularization, so we are in effect
evaluating̀ 1 and`2

2 regularization in addition tò1 + `2
2 regularization. We use a variant of iterative

scaling for parameter estimation; we note that our regularized objective functions are all convex in
Λ.3

For each model and each(α, σ2), we compute the cross-entropy of the first development set
for the corresponding domain; we denote this value asHm

α,σ for themth model,m ∈ {1, . . . , 57}.
Then, for eachm and(α, σ2), we can compute how much worse the settings(α, σ2) perform with
modelm as compared to the best hyperparameter settings for that model:

Ĥm
α,σ = Hm

α,σ −min
α,σ

Hm
α,σ (18)

We would like to select(α, σ2) with small “error” Ĥm
α,σ across all modelsm; i.e., we want to

minimize how much performance we lose by using that single(α, σ2) across models as compared
to optimizing hyperparameters separately for each model. In particular, we choose the(α, σ2) value
that minimizes the root mean squared (RMS) error across models:

ĤRMS
α,σ =

√√√√ 1
57

57∑
m=1

(Ĥm
α,σ)2 (19)

For each of̀ 1, `2
2, and `1 + `2

2 regularization, we choose the 6–8 best hyperparameter settings
according to this metric; we evaluate these candidate hyperparameters further in the next section.
We list the candidate hyperparameters for each regularization method in Table 2.

3Here, we describe how we adapt improved iterative scaling (Della Pietra et al., 1997) to`1 + `22 regularization. The
original update is to take

λ
(t+1)
i ← λ

(t)
i + δ

(t)
i (14)

whereδ
(t)
i satisfies ∑

x,y

p̃(x, y)fi(x, y) =
∑
x,y

p̃(x)pΛ(t)(y|x)fi(x, y) exp(δ
(t)
i f#(x, y)) (15)

and wheref#(x, y) =
∑

i
fi(x, y). As the right-hand side of this equation is strictly monotonic inδ

(t)
i , we can solve

for δ
(t)
i using a simple search algorithm such as binary search.

To adapt this algorithm tò2
2 regularization, one simply adds the term

λ
(t)
i

+δ
(t)
i

Dσ2
i

to the right-hand side of eq. (15) (Chen

and Rosenfeld, 2000). However, handling the penalty term for`1 regularization is trickier because of the discontinuity in
the derivative of|λi| at λi = 0. To address this, we do not allowλi to jump acrossλi = 0 in a single iteration;i.e., if
δ
(t)
i will causeλ

(t+1)
i to have the opposite sign asλ

(t)
i , we reduce the magnitude ofδ

(t)
i so thatλ(t+1)

i = 0.

The algorithm we use is as follows: Ifλ(t)
i 6= 0, we chooseδ(t)

i to satisfy∑
x,y

p̃(x, y)fi(x, y) =
∑
x,y

p̃(x)pΛ(t)(y|x)fi(x, y) exp(δ
(t)
i f#(x, y)) +

αi

D
sgnλ

(t)
i +

λ
(t)
i + δ

(t)
i

Dσ2
i

(16)

If sgn(λ(t)
i + δ

(t)
i ) = − sgnλ

(t)
i , we setδ(t)

i = −λ
(t)
i . If λ

(t)
i = 0, in eq. (16) we replace sgnλ(t)

i with

sgn

(∑
x,y

p̃(x, y)fi(x, y)−
∑
x,y

p̃(x)pΛ(t)(y|x)fi(x, y)

)
(17)

6



RMS mean max
(α, σ2) error error error
(0.5, 6 ) 0.011 0.007 0.033
(0.6, 8 ) 0.011 0.008 0.032
(0.6, 10 ) 0.011 0.009 0.037
(0.5, 7 ) 0.012 0.007 0.036
(0.6, 7 ) 0.012 0.009 0.047
(0.5, 5 ) 0.013 0.009 0.061

(0.0, 2.5 ) 0.034 0.025 0.137
(0.0, 2 ) 0.037 0.027 0.164
(0.0, 3 ) 0.039 0.028 0.123
(0.0, 4 ) 0.054 0.041 0.141

(0.0, 1.5 ) 0.056 0.037 0.249
(0.9,∞ ) 0.062 0.044 0.230
(0.8,∞ ) 0.062 0.044 0.236
(0.0, 5 ) 0.070 0.056 0.172
(0.7,∞ ) 0.072 0.054 0.246
(0.0, 1.2 ) 0.082 0.052 0.354
(1.0,∞ ) 0.092 0.068 0.306
(1.1,∞ ) 0.093 0.069 0.306
(1.2,∞ ) 0.095 0.070 0.307
(0.0, 1 ) 0.107 0.069 0.450

Table 3: Mean and maximum values ofĤm
α,σ for each candidate hyperparameter setting over all 218

models evaluated in Section 2.2. All errors are in nats, or natural bits.

2.2 Selecting the Single Best Hyperparameter Setting

To choose the best hyperparameters from within the candidate set found in Section 2.1, we repeat the
same analysis as before except over a larger set of models. Instead of selecting only “representative”
training set sizes andn-gram orders from the range of values given in Table 1, we selectall of
them, resulting in a total of 218 models over the seven domains. For each of these models, we
estimate parameters using each of the 20 candidate hyperparameter settings given in Table 2. In
addition, for each of the seven domains, we select the six bestdomain-specifichyperparameter
settings not present in the domain-independent candidates and evaluate these as well. As before, we
can computeĤm

α,σ for each model and(α, σ2), and then compute the root mean squared error for
each(α, σ2) over all models. In Table 3, we display this value as well as the mean and maximum
errors for all candidate parameter settings. All errors are reported innats, or natural bits. That is,
when we compute cross-entropies using eq. (3), we use natural logarithms rather than logarithms
base 2.4

On the development sets, the(α, σ2) value with the lowest squared error is (0.5, 6), and these
are the hyperparameter settings we use in all later experiments unless otherwise noted. The root
mean squared error, mean error, and maximum error for these hyperparameters on the evaluation

4The reason that we report cross-entropies in nats rather than bits is because of eq. (7). The most natural interpretation
for the units of theλi’s is nats, since they are exponentiated basee when computing model probabilities. This will let us
directly compareγ values with average discounts in Section 3.2.
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sets are 0.011, 0.007, and 0.033, respectively (the same values as for the development set). To put
these values in perspective, these correspond to differences of 1.1%, 0.7%, and 3.4% in perplexity,
respectively; differences in perplexity of about 1% are generally considered insignificant. Thus,
we see that we can achieve good performance across domains, data set sizes, andn-gram orders
using a single set of hyperparameters as compared to optimizing hyperparameters separately for
each model.5

2.3 Comparing Regularization Methods forN -Gram Models

While this is not a focus of this work, we compare`1+`2
2 regularization with̀ 1 and`2

2 regularization
for n-gram models since this may be of general interest. Since`1 and`2

2 regularization are special
cases of̀ 1 + `2

2 regularization, we expect them to do no better.6 First, we consider the case where
we use a single hyperparameter setting across all models for each regularization method. For`1

regularization, the best setting on the development data isα = 0.9, and for`2
2 regularization, we

haveσ2 = 2.5. On the evaluation data, this yields a maximum error of 0.233 and 0.131 nats,
respectively, corresponding to perplexity differences of 26% and 14%. These perplexity differences
are considered very significant, and thus`1 and`2

2 regularization are unsuitable when using a single
hyperparameter setting across models.

In addition to comparing performance with the best performance found for each model, we
can directly compare each regularization method with each other. For each of our 218 models, we
compute the difference between the evaluation cross-entropy for`1 regularization (withα = 0.9)
and`1 + `2

2 regularization (withα = 0.5, σ2 = 6). On average,̀1 + `2
2 regularization is 0.036

nats better with a median gain of 0.021 nats. The maximum difference is 0.216 nats (i.e., `1 + `2
2 is

better by this much), and the minimum difference is -0.019 nats (i.e., `1 +`2
2 is worse by this much).

Comparing̀ 2
2 regularization with̀ 1 + `2

2 regularization,̀ 1 + `2
2 regularization is 0.018 nats better

on average with a median gain of 0.014 nats. The maximum difference is 0.116 nats and minimum
is -0.019 nats.

Instead of assuming the same hyperparameter values across all models, we can optimize hyper-
parameters separately for each model. For each model, we find the best hyperparameter settings
for each regularization method on the development sets and then examine the performance of these
hyperparameter settings on the evaluation sets. First, we compare`1 with `1 + `2

2 regularization.
We find that̀ 1 + `2

2 regularization is 0.040 nats better on average with a median gain of 0.027 nats.
The maximum difference is 0.234 nats and minimum is -0.0001 nats. For`2

2 regularization,̀ 1 + `2
2

regularization is 0.012 nats better on average with a median gain of 0.007 nats. The maximum
difference is 0.101 nats and minimum is -0.0002 nats.

Thus, we find that̀1 + `2
2 regularization is superior to both̀1 and`2

2 regularization forn-gram
models, with`2

2 regularization being better than`1. On average, the gain of`1 + `2
2 regularization

over`2
2 regularization is quite small, 1–2% in perplexity, but for some models, the gain can be more

than 10% in perplexity. However, we see large performance differences only for sparsely estimated
models; when there is a copious amount of training data, the difference in performance between

5When we compute the best performanceminα,σ Hm
α,σ for each model, we consider only the candidate hyperparame-

ters given in Table 2 and the 6–8 additional domain-specific hyperparameter settings. However, it is possible that the best
performance is actually achieved outside of these hyperparameter settings. To estimate the size of this effect, we compare
the best performance achieved among these hyperparameters with the best performance achieved using the grid search in
Section 2.1. Over the 57 models evaluated in Section 2.1, we found the largest difference between these two values to be
about 0.003 nats, or 0.3% in perplexity. Thus, this issue is probably insignificant.

6It is possible that̀1 or `22 regularization does better than`1 + `22 due to hyperparameter overfitting. That is, we may
pick hyperparameters for`1 + `22 regularization on the development set that do not perform as well on the evaluation set.
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statistic RMSE coeff.
1
D

∑F
i=1 |λ̃i| 0.043 0.938

1
D

∑
i:λ̃i>0 λ̃i 0.044 0.939

1
D

∑F
i=1 λ̃i 0.047 0.940

1
D

∑F
i=1 |λ̃i|

4
3 0.162 0.755

1
D

∑F
i=1 |λ̃i|

3
2 0.234 0.669

1
D

∑F
i=1 λ̃2

i 0.429 0.443
F 6=0
D 0.709 1.289

F 6=0 log D
D 0.783 0.129
F
D 0.910 1.109

F log D
D 0.952 0.112
1 1.487 1.698
F

D−F−1 2.232 -0.028
F 6=0

D−F 6=0−1 2.236 -0.023

Table 4: Root mean squared error (RMSE) in nats when predicting difference in development set
and training set cross-entropy as linear function of a single statistic. The last column is the optimal
coefficient found for that statistic.

statistics RMSE
1
D

∑F
i=1 |λ̃i|, F 6=0

D 0.0419
1
D

∑F
i=1 |λ̃i|, F

D 0.0421
1
D

∑F
i=1 |λ̃i|, F 6=0 log D

D 0.0421
1
D

∑F
i=1 |λ̃i|, 1

D

∑F
i=1 λ̃i 0.0423

1
D

∑F
i=1 λ̃i, 1

D

∑
i:λ̃i>0 λ̃i 0.0423

Table 5: Root mean squared error (RMSE) in nats when predicting difference in development set
and training set cross-entropy as linear function of two statistics; the top five pairs are listed.

regularization methods is quite small.

3 Predicting Test Set Performance forN -Gram Models

3.1 Using Linear Regression to Find a Formula for Performance Prediction

Now that we have established which regularization method and hyperparameters to use (`1 + `2
2

regularization withα = 0.5 andσ2 = 6), we attempt to empirically discover a simple formula for
predicting the test cross-entropy of regularizedn-gram models. The basic strategy is as follows: We
first build a large number ofn-gram models over different domains, training set sizes, andn-gram
orders. Then, we come up with a set of candidate statistics,e.g., training cross-entropy, number of
features, etc., and do linear regression to try to best model test cross-entropy as a linear function of
these candidate statistics. We assume that training and test data come from the same distribution;
otherwise, it would be difficult to predict test performance. Since our training and development sets
are portions of the same randomly shuffled data set, this assumption should be satisfied here.

We use the same 218n-gram models as in Section 2.2. Before we introduce the statistics we
consider, we first review notation: Recall that we useD to denote the number of events in the
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Figure 1: Graph of optimism on evaluation datavs. 1
D

∑F
i=1 |λ̃i| for variousn-gram models under

`1 + `2
2 regularization,α = 0.5 andσ2 = 6. The line represents the predicted optimism according

to eq. (7) withγ = 0.938.

training data andF to denote the number of features (or parameters) in a model. LetF 6=0 be the
number of featuresfi with λ̃i 6= 0. In exponential models, a featurefi with λ̃i = 0 has no effect
in the model, so it is unclear whether such a feature should be included in the total feature count.7

Also, note that cross-entropy is negative log-likehoodper event, so most of the statistics below will
be scaled by the factor1D to match.

Then, for each of our regularized models we compute the following statistics for use in linear
regression:

H(p̃, pΛ̃) This is the cross-entropy of the training data, and training set performance is an important
term in many model selection methods. The coefficient for this statistic is usually taken to be
1.

F
D , F 6=0

D The termF
D is used in AIC (eq. (6)) among other methods. As noted above, it is unclear

whether we should count features withλ̃i = 0, so we consider using bothF andF 6=0.

1
D

∑F
i=1 |λ̃i| This term is used in thè1 regularization objective function (eq. (8)). Regularization
can be viewed as a form of model selection.

1
D

∑F
i=1 λ̃i, 1

D

∑
i:λ̃i>0 λ̃i We considered these terms as well since the impact of features with neg-

ativeλ̃i is unclear.

1
D

∑F
i=1 λ̃2

i This term is used in thè22 regularization objective function (eq. (9)).

7With `1 or `1 + `22 regularization, a significant fraction of thẽλi’s may be set to zero (Tibshirani, 1994; Kazama and
Tsujii, 2003).
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Figure 2: Graph of optimism on evaluation datavs. F 6=0

D for variousn-gram models under̀1 + `2
2

regularization,α = 0.5 andσ2 = 6.

1
D

∑F
i=1 |λ̃i|

3
2 , 1

D

∑F
i=1 |λ̃i|

4
3 These terms are suggested by the analysis in Section 3.2.

F log D
D , F 6=0 log D

D The termF log D
D is used in the Bayesian Information Criterion (Schwarz, 1978).

F
D−F−1 , F 6=0

D−F 6=0−1 The term F
D−F−1 is used in a modification of AIC known as AICc (Hurvich and

Tsai, 1989).

1 The value 1 is present to handle constant offsets in linear regression.

After some initial investigation, it became clear that training set cross-entropy is a very good (partial)
predictor of test set cross-entropy with coefficient 1. As there is ample theoretical support for this,
instead of fitting test set performance directly, we chose to model the difference between test and
training performance as a function of the remaining statistics. This difference is sometimes referred
to as theoptimismof a model:

optimism(pΛ̃) ≡ H(p∗, pΛ̃)−H(p̃, pΛ̃) (20)

As before, all cross-entropies are expressed in nats.
First, we attempt to model optimism as a linear function of a single statistic. For each statistic

listed previously, we perform linear regression to minimize root mean squared error when pre-
dicting development set cross-entropies. In Table 4, we display the best coefficient and root mean
squared error for each statistic. We see that three statistics have by far the lowest error:1

D

∑F
i=1 |λ̃i|,

1
D

∑
i:λ̃i>0 λ̃i, and 1

D

∑F
i=1 λ̃i. In practice, most̃λi in n-gram models are positive, so these statistics

tend to have very similar values. We choose the best performing of these,1
D

∑F
i=1 |λ̃i|, and show

in Section 3.2 why this statistic is more appealing than the other two. To account for the possibility

11



that optimism may be a non-linear function of one of the statistics under consideration, we graphed
optimism against each of our statistics over our 218 models. Visual inspection revealed no simple
way of reducing prediction error using non-linear functions.

Next, we investigate modeling optimism as a linear function of apair of statistics. In Table 5,
we display the root mean squared error for the best pairs of statistics. Note that the best MSRE for
two variables (0.042) is only slightly lower than the best MSRE for one (0.043), so it is questionable
whether having a second variable actually helps. To examine this situation further, for each of our
seven domainsA–G, we redo our linear regression using models from only that domain and look
at how the resulting coefficients vary by domain. For the first three pairs of statistics in Table 5,
the coefficient for1D

∑F
i=1 |λ̃i| is reasonably stable across domains, but the coefficient for the other

statistic is near zero, sometimes positive, sometimes negative. This suggests that the second statistic
is not significant. For the other two pairs of statistics, coefficients for both statistics varied widely
across domains, sometimes large and negative, sometimes large and positive. This suggests that
these are not robust predictions.

Thus, our analysis suggests that among our candidate functions, the best predictor of optimism
is simply

optimism≈ γ

D

F∑
i=1

|λ̃i| (21)

whereγ = 0.938, with this value being independent of domain, training set size, andn-gram
order. In other words, the difference between test and training cross-entropy is a linear function of
1
D

∑F
i=1 |λ̃i|, the sum of the magnitudes of the model parameters scaled per event. Substituting this

into eq. (20) and rearranging, we get eq. (7).
To assess the accuracy of eq. (7), we compute various statistics on our evaluation sets using

the bestγ from our development data,i.e., γ = 0.938. In Figure 1, we graph optimism for the
evaluation data against1D

∑F
i=1 |λ̃i| for each of our models; we see that the linear correlation is

very good. For contrast, in Figure 2 we graph optimism againstF 6=0

D as would be suggested by an
AIC-like approach. For eq. (7), the correlation between the actual and predicted optimism on the
evaluation data is 0.9996; the mean absolute error is 0.030 nats; the root mean squared error is 0.043
nats; the median absolute error is 0.022 nats; and the maximum absolute error is 0.166 nats. Thus,
on average we can predict optimism (and test set performance) to within 2–4% in perplexity, though
in the worst case we may be off by as much as 18% in perplexity. In Section 7.1, we discuss how
these results compare to other results for performance prediction.

3.2 Why Does Performance Prediction Work So Well?

The correlation in Figure 1 is remarkably high, and thus it begs for an explanation. First, let us
express the difference in test and training cross-entropy for a model in terms of its parametersΛ.
Substituting eq. (4) into eq. (3), we get

H(p̃, pΛ) = −
∑
x,y

p̃(x, y) log
exp(

∑F
i=1 λifi(x, y))
ZΛ(x)

(22)

= −
∑
x,y

p̃(x, y)
F∑

i=1

λifi(x, y) +
∑
x

p̃(x) log ZΛ(x) (23)

= −
F∑

i=1

λiEp̃[fi] +
∑
x

p̃(x) log ZΛ(x) (24)
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Figure 3: Graph of discount(Ep̃[fi]−Ep∗ [fi])×D versus̃λi for all features in letter 5-gram model
built on 100 word training set from domainA.

Then, we can express the difference in test and training performance as

H(p∗, pΛ)−H(p̃, pΛ) =
F∑

i=1

λi(Ep̃[fi]− Ep∗ [fi]) +
∑
x

(p∗(x)− p̃(x)) log ZΛ(x) (25)

If we ignore the last term on the right, we see that optimism for exponential models is a simple
linear function of theλi’s with corresponding coefficientsEp̃[fi]−Ep∗ [fi] (which are constant with
respect toλi).8

Then, we can ask what values ofEp̃[fi] − Ep∗ [fi] would let us satisfy eq. (7). Consider the
following relationship:

(Ep̃[fi]− Ep∗ [fi])×D ≈ γ sgnλ̃i (27)

If we substitute this into eq. (25) and ignore the last term on the right again, this gives us exactly
eq. (7). We refer to the value(Ep̃[fi]−Ep∗ [fi])×D as thediscountof a feature. It can be thought
of as representing how many times less the feature occurs in the test data as opposed to the training
data, if the test data were normalized to be the same size as the training data. Discounts forn-grams
have been studied extensively in the past,e.g., (Good, 1953; Church and Gale, 1991; Chen and
Goodman, 1998), and tend not to vary much across different training set sizes.

8It is possible to express the normalization factorsZΛ(x) as just additional features and parameters in a model (or one
can omit them completely in unnormalized models). In this case, we simply have

H(p∗, pΛ)−H(p̃, pΛ) =

F∑
i=1

λi(Ep̃[fi]− Ep∗ [fi]) (26)
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Figure 4: Smoothed graph of discount versusλ̃i for all features in word trigram model built on 30k
sentence training set from domainE. Each smoothed point represents the average of at least 1024
raw data points.

Then, we can empirically check how well eq. (27) holds for real-life regularizedn-gram models.
Initially, we construct a total of tenn-gram models on domainsA (letter sequences) andE (WSJ data,
21k word vocabulary). Using the same regularization as before, we build four letter 5-gram models
on domainA on training sets ranging in size from 100 words to 30k words, and six models (either
trigram or 5-gram) on domainE on training sets ranging from 100 sentences to 30k sentences. We
create large development test sets (45k words for domainA and 70k sentences for domainE) to
better estimateEp∗ [fi].

In Figure 3, we graph the discount(Ep̃[fi]−Ep∗ [fi])×D versus̃λi for each feature in a single
model withλ̃i 6= 0 (letter 5-gram model, 100 words training). As the data appears very noisy and
it is difficult to discern any patterns that might exist, we smooth the data. We sort the points byλ̃i

values and partition the points into buckets containing at leastk points withk=512 or 1024.9 We
average all of the points in each bucket to get a “smoothed” data point, and plot this single point for
each bucket. In Figure 4, we plot the smoothed data for a single model (trigram model, domainE,
30k sentences training). While the data is quite smooth in some regions, for largeλ̃i the variation
in discounts is quite high and the graph is bumpy even after smoothing. In Figure 5, we plot the
smoothed data for all ten models in the rangeλ̃i ∈ [−1, 4].

At first glance, it doesn’t appear that discounts are constant on average forλ̃i > 0 (or λ̃i < 0)
as in eq. (27). Instead, the smoothed discounts appear to be increasing and sublinear inλ̃i for
λ̃i > 0.10 However, a closer examination reveals a more nuanced story. First, let us examine how

9We also enforce a minimum width for each bucket inλ̃i.
10This suggests using the term̃λa

i to help modelEp̃[fi]−Ep∗ [fi] for a ∈ (0, 1), which from eq. (25) would translate

to the termλ̃a+1
i in performance prediction. However, we evaluate the statistics1

D

∑F

i=1
|λ̃i|

4
3 and 1

D

∑F

i=1
|λ̃i|

3
2 in

Section 3.1, and neither helps.
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Figure 5: Smoothed graph of discount versusλ̃i for all features in ten different models built on
domainsA andE. Each smoothed point represents the average of at least 512 raw data points.

much different ranges of̃λi contribute to the overall value of
∑F

i=1 λ̃i(Ep̃[fi]−Ep∗ [fi]) in eq. (25).
In Figures 6 and 7, we plot histograms of this relationship for two different models. What we find
is that the great majority of the mass is concentrated in a relatively small range ofλ̃i, the range
λ̃i ∈ [0, 4], and this holds for all ten models under consideration. Thus, the value of the first term
on the right-hand side of eq. (25) is mostly determined by the discounts forλ̃i in this limited range,
which we refer to as thecritical region. Looking at Figure 5, we note that at a very rough level,
feature discounts are somewhat flat forλ̃i ∈ [0, 4] and have average values in the neighborhood of
γ = 0.938 as required by eq. (27). However, while this relationship holds at a coarse level, clearly
the relationship is not very precise.

Then, we can ask: how closely does eq. (27) have to hold in order to achieve the performance
prediction accuracy that we actually achieve? In Section 3.1, we find that the average absolute
prediction error of eq. (7) is about 0.03 nats. Let us say we have

(Ep̃[fi]− Ep∗ [fi])×D ≈ (γ + ε) sgnλ̃i (28)

for some error termε. Substituting this into eq. (25) (and ignoring the last term as before), this gives
us

H(p∗, pΛ̃) ≈ H(p̃, pΛ̃) +
γ

D

F∑
i=1

|λ̃i|+
ε

D

F∑
i=1

|λ̃i| (29)

The last term can be viewed as corresponding to prediction error, and its sensitivity toε depends
on the size1

D

∑F
i=1 |λ̃i| of the model. If 1

D

∑F
i=1 |λ̃i| is low, then the average discount can be quite

far from γ = 0.938 without yielding large absolute error (where we are mostly concerned with the
average discount in the critical region). For example, to attain an absolute prediction error of 0.03
nats with a model of size 0.3 nats/event (the approximate size of the smallest model of the ten), then
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Figure 6: Histogram of total fraction of
∑F

i=1 λ̃i(Ep̃[fi]−Ep∗ [fi]) mass as function of̃λi for letter 5-
gram model built on 100 word training set from domainA; i.e., this is a graph of

∑
i:λ̃i<λ λ̃i(Ep̃[fi]−

Ep∗ [fi]) as function ofλ. Theλ̃i are bucketed in buckets of width 0.5.

|ε| can be as large as 0.1. While difficult to discern from Figure 5, it is plausible that the average
discount for each model in the critical region doesn’t stray from the target value ofγ = 0.938 more
than this amount.11

On the other hand, when1D
∑F

i=1 |λ̃i| is high (corresponding to points to the right in Figure 1),
then the average discount in the critical region must be quite close toγ = 0.938 in order to get good
agreement. To investigate this issue further, we examine the ten models from Section 3.1 with the
highest 1

D

∑F
i=1 |λ̃i|. These correspond to very sparse models, models built on large vocabularies

(domainsE, F, andG) with very small training sets and largen-gram orders. We plot the smoothed
discounts as a function of̃λi for these models in Figure 8. Notably, we find that for these models,
the great majority (90%–95%) of theirn-grams occur only once in the training data. The average
discounts for 1-count features range from 0.911 to 0.949 across models. That is, very sparse models
tend to have similar statistics, resulting in similar average discounts.

To recap, the reason that eq. (7) gives low absolute prediction error is different for non-sparse
and sparse models. Looking at the first term on the right-hand side of eq. (25), for non-sparse models
(i.e., models with low1

D

∑F
i=1 |λ̃i|), we find there is significant variation in average discounts across

models. However, because1D
∑F

i=1 |λ̃i| is low, this results in fairly low absolute error. In contrast,
we find that sparse models are all similar statistically, being dominated by single-countn-grams
with features whose average discount is quite close toγ = 0.938. Consequently, their overall
average discounts are also near this value, resulting in low absolute prediction error.

11In this discussion, we have been assuming that discounts remain constant with respect toλ̃i (on average), when this
is clearly not the case in Figure 5. However, the basic argument that for small models, variations in average discount do
not impact absolute prediction error much still holds.
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Figure 7: Like Figure 6, except for word trigram model built on 30k sentence training set from
domainE.

So far, we have ignored the last term on the right-hand side of eq. (25). We can compute this
term for various models to determine its significance. For the first ten models considered in this
section, these values range from -0.025 nats to -0.258 nats (while the other term on the right-hand
side range from 0.330 to 4.694 nats). For the ten sparse models, these values range from -0.131
to -0.283 nats (while the other term range from 5.045 to 6.397 nats). While this normalization
correction term is a relatively small factor in the overall performance, some of these values are
much larger than the average prediction error of eq. (7), and thus this term plays a significant role
in performance prediction.

For exponentialn-gram models, it is possible to add a single feature for eachn-gram history
and choose corresponding parametersλi to exactly imitate the effect of normalization (Chen and
Rosenfeld, 2000). In this case, the second term on the right-hand side of eq. (25) becomes zero, and
we can examine the impact of normalization features on the sum in the first term in the same way
that we have been examining the effect of regular features. In Figure 9, we plot smoothed discounts
versus̃λi for each normalization feature in a single model. Notice that most of theseλ̃i are negative
and that the average discount ispositiveunlike for regular features with̃λi < 0. Thus, in eq. (25),
the normalization features are a correction term in the opposite direction of the regular features.
We also note that in ann-gram model, (almost all)n′-grams forn′ < n have the same counts as
histories and as backoff events. That is, many factorsEp̃[fi] − Ep∗ [fi] in the first sum in eq. (25)
will occur with both normalization features and regular features. This suggests that the larger the
average discounts for regular features, the larger the average discounts for normalization features as
well. Since most̃λi for normalization features are negative rather than positive, these features will
tend to improve agreement with eq. (7) by helping to correct for overly high or overly low average
discounts among regular features.

In summary, the fact that eq. (7) predicts performance as well as it does is due to a combination
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Figure 8: Smoothed graph of discount versusλ̃i for all features in ten different sparse models. Each
smoothed point represents the average of at least 256 raw data points.

of factors. We see that prediction is not at all perfect, but for several reasons, the absolute error
in cross-entropy tends to be quite small. One of the key factors why eq. (7) works forn-gram
language models is that discounts remains in the general neighborhood of 0.9 or so on average even
when varying many model properties as seen in Figure 5. However, we note that this property will
not hold for all exponential models. For example, the Good-Turing estimate (Good, 1953) gives
us a way to estimate the average discount for a set of features on a given data set, and we can
use this knowledge to select a feature set and training set size so that discounts are near zero on
average (e.g., by making sure all features have multiple training counts). In this case, training and
test performance should be nearly equal by eq. (25). If the model also has a large1

D

∑F
i=1 |λ̃i|,

then eq. (7) will yield a large absolute prediction error. Thus, while eq. (7) works well forn-gram
language models, this equation will not apply to all exponential models.

3.3 The Effect of Regularization on Performance Prediction

In Section 3, we have so far only considered`1 + `2
2 regularization with the hyperparameter settings

(α = 0.5, σ2 = 6). Here, we consider how performance prediction is affected as we vary regular-
ization settings. In Figure 10, we graph optimism for the evaluation set against1

D

∑F
i=1 |λ̃i| for each

of our models under̀1 regularization withα = 0.9; Figure 11 is the same except for`2
2 regulariza-

tion with σ2 = 2.5. (These are the best hyperparameter settings found for`1 and`2
2 regularization

in Section 2.3.) For̀1 regularization withα = 0.9, the optimalγ on the development set is 1.007
and the root mean squared prediction error on the evaluation set is 0.054 nats. For`2

2 regularization
with σ2 = 2.5, the optimalγ is 0.882 and the root mean squared error is 0.139 nats. For reference,
the root mean squared error we achieve for`1 + `2

2 regularization in Section 3.1 is 0.043 nats. Thus,
we see that depending on the type of regularization and the hyperparameter values, there can be a
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Figure 9: Smoothed graph of discount versusλ̃i for normalization features in word trigram model
built on 30k sentence training set from domainE. Each smoothed point represents the average of at
least 1024 raw data points.

significant difference in how well we can predict performance using eq. (7). In particular, we find
substantially worse correlation with̀22 regularization.

In retrospect, we find that choosing hyperparameters carefully in Section 2 was important in
doing well in performance prediction. While hyperparameters were chosen to optimize test per-
formance rather than prediction accuracy, we find that the chosen hyperparameters are beneficial
for the latter task as well. It may be possible to discover hyperparameters that yield even better
prediction accuracy, but at the cost of test performance.

Another point is that we see that the optimalγ value in eq. (7) depends on the type of regulariza-
tion and the hyperparameter values. Indirectly, this shows that eq. (7) provides accurate performance
prediction only for theregularizedparameter estimates̃λi (using the given hyperparameters) and
not for arbitrary parameter valuesλi. If parameters are chosen using different hyperparameters (or
using some other scheme entirely), then usingγ = 0.938 may not provide very accurate prediction.
On the other hand, theγ values we find for different hyperparameters are not hugely different, so it
may be the case that eq. (7) is still somewhat accurate forΛ “near” the regularized estimates.

4 N -Gram Models and Backoff Features

While being able to predictn-gram model performance well is interesting, it is unclear why this is
useful. In this section, we use performance prediction to explain why backoff features inn-gram
models improve performance, and use this analysis to motivate a general heuristic for model design.
In an exponentialn-gram model, one has features of the form given in eq. (11) for eachn′-gram
ω in the training data forn′ ≤ n. We refer to features corresponding ton′-grams forn′ strictly
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Figure 10: Graph of optimism on evaluation datavs. 1
D

∑F
i=1 |λ̃i| for variousn-gram models under

`1 regularization,α = 0.9. The line represents the predicted optimism according to eq. (7) with
γ = 1.007.

Heval Hpred Htrain
1
D

∑F
i=1 |λ̃i|

no backoff 2.681 2.724 2.341 0.408
2g backoff only 2.528 2.513 2.248 0.282
1g+2g backoff 2.514 2.474 2.241 0.249

Table 6: Various statistics for trigram models built in domainA on a training set of 1k words.
Heval isH(p∗, pΛ̃), the cross-entropy of the evaluation data;Hpred is the predicted test cross-entropy
according to eq. (7); andHtrain isH(p̃, pΛ̃), the training cross-entropy. AllH values are in nats.

less thann asbackoff features. We can use the Akaike Information Criterion and eq. (6) to predict
whether backoff features improve test performance. First, we note that the maximum likelihood
training set cross-entropyH(p̃, pΛ̂) is the same whether backoff features are present or not. Since a
backoff model has more parametersF , AIC predicts that backoff features hurt performance.

In fact, it is well-known that backoff features help performance a great deal (Jelinek and Mercer,
1980), and we analyze this phenomenon using eq. (7). We present statistics in Table 6 for various
trigram models built on the same data set.12 The last row corresponds to a normal trigram model;
the second row corresponds to a model lacking unigram features; and the first row corresponds to a
model with no unigram or bigram features. As backoff features are added, we see that the training
cross-entropy improves, which is not surprising since the number of features is increasing. More
surprising is that as we add features, the “size” of the model1

D

∑F
i=1 |λ̃i| decreases.

12We note that the prediction error from eq. (7) in Table 6 is quite small forn-gram models without backoff features.
This is evidence that eq. (7) is accurate for more than just puren-gram models.
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Figure 11: Graph of optimism on evaluation datavs. 1
D

∑F
i=1 |λ̃i| for variousn-gram models under

`2
2 regularization,σ2 = 2.5.

We can explain these results by examining a simple example. Consider an exponential model
consisting of the featuresf1(x, y) andf2(x, y) with (regularized) parameter valuesλ̃1 = 2 and
λ̃2 = 4. From eq. (4), this model has the form

pΛ̃(y|x) =
exp(2f1(x, y) + 4f2(x, y))

ZΛ(x)
(30)

Now, consider creating a new featuref3(x, y) = f1(x, y) + f2(x, y) and setting our parameters as
follows: λnew

1 = 0, λnew
2 = 2, andλnew

3 = 2. Substituting into eq. (4), we have

pΛnew(y|x) =
exp(0f1(x, y) + 2f2(x, y) + 2f3(x, y))

ZΛ(x)
(31)

=
exp(2f1(x, y) + 4f2(x, y))

ZΛ(x)
(32)

Notice that the distribution this model describes does not change, and thus neither will its training
performance: the parameter mass inλnew

3 effectively boosts the parameters off1(x, y) andf2(x, y)
by the same amount so the resulting effect of these features is the same.13 However, the (unscaled)
size

∑F
i=1 |λi| of the model has been reduced from 2+4=6 to 2+2=4, and consequently by eq. (7)

we predict that test performance will improve.14

In general, these new parameter valuesΛnew will not be the regularized parameter estimates for
the expanded feature set. In other words, the actual regularized parameter estimatesΛ̃new will have

13If we require feature values to be binary, then we needf1 andf2 to be non-overlapping;i.e., there is no(x, y) such
thatf1(x, y) 6= 0 andf2(x, y) 6= 0.

14While we have noted that eq. (7) will not be as accurate for parameter values that are not the regularized estimates,
we argue in Section 3.3 that eq. (7) should still give reasonable predictions for nearby values.

21



-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

λ

predicted letter

Figure 12: Nonzerõλi values for bigram features grouped by predicted letter (i.e., the second letter
in each bigram), for bigram model without unigram backoff features built on domainA on training
set of 1k words. The large ‘×’ marks represent the averageλ̃i in each column; the average includes
history words for which no feature exists or for whichλ̃i = 0.

a better score according to the`1 + `2
2 regularization objective function given in eq. (10) thanΛnew.

We note that the right-hand side of eq. (10) is similar to that of eq. (7) and posit that improving
the former objective function will also tend to improve the latter;i.e., it is likely that the predicted
performance of̃Λnew will be even better than that ofΛnew.

Hence, if we can add “redundant” features to a model to shrink its total size
∑F

i=1 |λ̃i|, we can
improve predicted performance (and perhaps also actual performance). Whenever we find a group
of features with similar̃λi values, adding a new feature that is the sum of these features will tend
to shrink the overall

∑F
i=1 |λ̃i|. The higher the magnitude of the originalλ̃i, the larger the gain in

predicted performance.
Given this perspective, we can explain why backoff features improven-gram model perfor-

mance. For simplicity, let us consider a bigram model, one without unigram backoff features. For
a given wordwj , it seems likely that probabilities of the formp(wj |wj−1) are correlated across
differentwj−1, and thus so are thẽλi for the corresponding bigram features. For example, if a word
has a high unigram probability, it will also tend to have high bigram probabilities. In Figure 12,
we plot the nonzerõλi values for all (bigram) features in a bigram model without unigram features.
Each column contains thẽλi values for a differentwj , and the large ‘×’ mark in each column is the
average value of̃λi over all history wordswj−1. From the graph, we see that the averageλ̃i for each
wordwj is often quite different from zero, which suggests that we can create features of the form

fwj (x, y) =
∑
wj−1

fwj−1wj (x, y) (33)
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Figure 13: Like Figure 12, but for model with unigram backoff features.

to reduce the overall size of the model (using the notation from eq. (11)).15 In fact, these features
are exactly unigram backoff features. In Figure 13, we plot the nonzeroλ̃i values for all bigram
features after adding unigram backoff features. We see that the averageλ̃i values are much closer
to zero, implying that the size

∑F
i=1 |λ̃i| has been significantly decreased. We can extend this idea

to higher-ordern-gram models as well;e.g., we can use bigram features to shrink trigram feature
parameters, whose parameters can in turn be shrunk by adding unigram features. As shown in
Table 6, both training cross-entropy and model size can be reduced by this technique.

Thus, our analysis suggests the following general technique for improving the (cross-entropy)
performance of an exponential model:

Heuristic 1 Identify groups of features which will tend to have correlatedλ̃i values. For each such
feature group, add a new feature to the model that is the sum of the original features.

As noted earlier, if we have the constraint that all features must be binary-valued, then features in
the same group cannot overlap. In the next section, we show how we can apply this heuristic to
design a novel class-based language model.16

5 Class-Based Language Models

In this section, we analyze and evaluate several class-based language models with two main goals in
mind. First, we show that eq. (7) can accurately predict performance for class-based models, not just

15Features for bigrams that do not occur in the training data will not be included in a model. However, for the purposes
of this sum, we pretend they do exist.

16One possible way to apply Heuristic 1 is to first train a model and then to group together features based solely onλ̃i

values. We posit that choosing feature groupings in hindsight will not improve performance becauseEp̃[fi] − Ep∗ [fi]
will tend to be larger on average for such features.
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Heval Hpred Htrain
1
D

∑F
i=1 |λ̃i|

wordn-gram 4.649 4.672 3.354 1.405
modelS 5.458 5.458 5.430 0.029
modelM 4.536 4.544 3.296 1.330
modelL 4.547 4.536 3.145 1.483

Table 7: Various statistics for word and class trigram models built on 100k sentences of WSJ training
data.Heval isH(p∗, pΛ̃), the cross-entropy of the evaluation data;Hpred is the predicted test cross-
entropy according to eq. (7); andHtrain isH(p̃, pΛ̃), the training cross-entropy. AllH values are in
nats. Class models are built with 50 word classes.

for word n-gram models. Secondly, we show how we can use Heuristic 1 to design a novel class-
based model that outperforms existing models in both perplexity and speech recognition word-error
rate.

In class-based modeling, each wordwj in a sentencew1 · · ·wl is labeled with a classcj . Then,
we have

p(w1 · · ·wl) =
∑

c1···cl

p(c1 · · · cl+1, w1 · · ·wl) (34)

=
∑

c1···cl

l+1∏
j=1

p(cj |c1 · · · cj−1, w1 · · ·wj−1)
l∏

j=1

p(wj |c1 · · · cj , w1 · · ·wj−1) (35)

wherecl+1 is taken to be a distinguished end-of-sentence token. Here, we assumehard classing
is employed;i.e., each wordw is always mapped to the same classc(w) regardless of context. In
this case, we need not perform the sum in the preceding equation; we need only consider the class
sequencec(w1) . . . c(wl). The parameterization of the models used to predictcj andwj determine
the nature of the model, and there are a wide variety of possible choices (Goodman, 2001).

To discuss the possible space of class-based language models, we introduce some notation. We
use the notationpng(y|ω) to express an exponentialn-gram model as defined in Section 2, where
we have features for each suffix of eachωy occurring in the training set. For example, the model
png(wj |wj−1cj) has features for eachn-gram occurring in the training set with one of the following
forms:wj , cjwj , orwj−1cjwj . We use the notationpng(y|ω1, . . . , ωk) to denote a model containing
all features in the modelspng(y|ω1), . . . , png(y|ωk). For example,png(cj |cj−2cj−1, wj−2wj−1)
contains features forn-grams of the formscj , cj−1cj , cj−2cj−1cj , wj−1cj , andwj−2wj−1cj .

We say that a model is a class-basedn-gram model for somen if the prediction of each word and
of each class conditions on words and/or classes at mostn − 1 positions back. Then, we construct
the training set events(x, y) for a class-basedn-gram model as follows: We assume our raw data
consists of a sequence of sentences of the formw1 · · ·wl labeled with classesc1 · · · cl. (With hard
classing, we just takecj = c(wj).) For each sentence, we generatel + 1 class prediction events
wherey = cj andx = cj−n+1 · · · cj−1wj−n+1 · · ·wj−1 for j = 1, . . . , l + 1 andl word prediction
events wherey = wj andx = cj−n+1 · · · cjwj−n+1 · · ·wj−1 for j = 1, . . . , l. We say that an
n-gram over words and classes occurs in the training data if the referenced words and classes occur
in their associated positions in some event in the training data.

We can define a class-basedn-gram model by choosing parameterizations for the distributions
p(cj |c1 · · · cj−1, w1 · · ·wj−1) andp(wj |c1 · · · cj , w1 · · ·wj−1) in eq. (35) above. For example, the
most widely-used class-basedn-gram model is the one introduced by Brown et al. (1992), which
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takes

p(cj |c1 · · · cj−1, w1 · · ·wj−1) = png(cj |cj−2cj−1)
p(wj |c1 · · · cj , w1 · · ·wj−1) = png(wj |cj) (36)

We refer to this model as the IBM class model. (In the original work, non-exponentialn-gram
models are used.) Clearly, there is a very wide range of class-basedn-gram models that one could
consider.

Now, we discuss how we can use Heuristic 1 to design a novel class-based model by using class
information to “shrink” a word-basedn-gram model. The basic idea is as follows: if we have an
n-gramω and anothern-gramω′ created by replacing a word inω with a similar word, then the two
corresponding features should have similarλ̃i’s. For example, it seems intuitive that then-gramson
Monday morningandon Tuesday morningshould have similar̃λi’s. Then, Heuristic 1 tells us how
to take advantage of this observation to improve the performance of a model.

Let’s begin with a word trigram modelpng(wj |wj−2wj−1). First, we would like to convert this
model into a class-based model. Without loss of generality, we have

p(wj |wj−2wj−1) =
∑
cj

p(wj , cj |wj−2wj−1) (37)

=
∑
cj

p(cj |wj−2wj−1)p(wj |wj−2wj−1cj) (38)

Thus, it seems reasonable to use the distributionspng(cj |wj−2wj−1) andpng(wj |wj−2wj−1cj) as
the starting point for our class model. This model can express the same set of word distributions
as our original word model, and hence may have a similar training cross-entropy. In addition, this
transformation can be viewed as shrinking together wordn-grams that differ only inwj . That is,
we expect that pairs ofn-gramswj−2wj−1wj that differ only inwj (belonging to the same class)
should have features with similarλ̃i. From Heuristic 1, we can make new features

fwj−2wj−1cj (x, y) =
∑

wj∈cj

fwj−2wj−1wj (x, y) (39)

These are exactly the features in our class prediction model (while the features on the right belong
to the word prediction model). When applying Heuristic 1, all features typically belong to the same
model, but even when they don’t one can achieve the same net effect.

Then, we can use Heuristic 1 to also shrink togethern-gram features forn-grams that differ
only in their histories. For example, we can create new features of the form

fcj−2cj−1cj (x, y) =
∑

wj−2∈cj−2,wj−1∈cj−1

fwj−2wj−1cj (x, y) (40)

This corresponds to replacingpng(cj |wj−2wj−1) with the distributionpng(cj |cj−2cj−1, wj−2wj−1).
We refer to this model as modelM , for “medium-sized” model:

p(cj |c1 · · · cj−1, w1 · · ·wj−1) = png(cj |cj−2cj−1, wj−2wj−1)
p(wj |c1 · · · cj , w1 · · ·wj−1) = png(wj |wj−2wj−1cj) (41)

By design, it is meant to have similar training set cross-entropy as a wordn-gram model while being
significantly smaller.
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For contrast, we consider two other exponential class-basedn-gram models. ModelS is the
IBM class model parameterized using exponential models as given in eq. (36). We note that neither
component distribution has many parameters as compared to models that directly condition on past
words, so we refer to this model as the “small” model. ModelL , the “large” model, is defined as

p(cj |c1 · · · cj−1, w1 · · ·wj−1) = png(cj |wj−2cj−2wj−1cj−1)
p(wj |c1 · · · cj , w1 · · ·wj−1) = png(wj |wj−2cj−2wj−1cj−1cj) (42)

For both class prediction and word prediction, we condition on all previous classes and words up to
two positions back using the most natural backoff order (backing off from nearest to farthest, first
class then word). Notice that the class prediction model is a 5-gram model and the word prediction
model is a 6-gram model, while in modelM , the class prediction model consists of features from
two trigram models and the word prediction model is a 4-gram model. Thus, we expect modelL
to be significantly larger than modelM . It is straightforward to extend each of these models from
being class trigram models (conditioning on up to two word positions back) to being class 4-gram
models (conditioning on up to three word positions back) or higher.

To give an idea of whether these models behave as we expect them to in terms of size and
training performance, in Table 7 we provide statistics for these models (as well as for a baseline
word n-gram model) built on 100k training sentences with 50 classes. (However, we will later see
that how the class models compare to the baseline and to each other will vary greatly as we vary
training set size,n-gram order, and the number of classes.) As expected, modelS has the smallest
size 1

D

∑F
i=1 |λ̃i|, M is next smallest, andL is the largest. On the other hand, modelL has the

lowest training cross-entropy,M the next lowest, andS the worst. As compared to the baseline
word n-gram model, modelS performs much worse on the test set. We can explain this from the
perspective of eq. (7): its training performance is so poor that even its small size cannot make up for
it. This is an example of a model that is too small to model the training data well; we discuss this
model further in Section 8.2. On the other hand, while modelL is larger than the baseline, it models
the training data substantially better, and thus achieves better test performance. Finally, we see that
modelM is both smaller than the baseline and has a lower training cross-entropy. This is similar to
the behavior we found when adding backoff features to wordn-gram models in Section 4, and hints
at the potential of Heuristic 1 for improving model performance.

5.1 Predicting Test Set Performance for Class-Based Models

In this section, we evaluate whether eq. (7) can accurately predict test performance for the class-
based modelsS, M , andL . For these experiments, we use the WSJ data and 21k word vocabulary
from domainE, and consider training set sizes of 1k, 10k, 100k, and 900k sentences. To create
word classes, we use the algorithm of Brown et al. (1992) on the largest training set. We create
three different classings containing 50, 150, and 500 classes. For each training set size and number
of classes (except for the largest training set with modelL due to resource constraints), we build
each of our three class models using`1 + `2

2 regularization with(α = 0.5, σ2 = 6), and we build
both 3-gram and 4-gram versions of each model. In all three models, word prediction for a wordwj

is conditioned on the classcj in the same position. We constrain thatp(wj |cj , ...) = 0 if c(wj) 6= cj

as would be expected. Conceptually, we can implement this by pinningλi to−∞ for all features of
the formfcjwj (x, y), c(wj) 6= cj .

In Figure 14, we plot optimism (i.e., test minus training cross-entropy) versus1
D

∑F
i=1 |λ̃i| for

these models (66 in total) on our WSJ evaluation set. The large points correspond to our classn-
gram models, while the small points replicate the points for wordn-gram models from Figure 1.
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Figure 14: Graph of optimism on evaluation datavs. 1
D

∑F
i=1 |λ̃i| for various models. The large

points correspond to modelsS, M , andL for WSJ data over different training set sizes,n-gram
orders, and numbers of classes. The small points represent regular wordn-gram models over several
domains, and are identical to the points from Figure 1. The line represents the predicted optimism
according to eq. (7) withγ = 0.938.

Remarkably, eq. (7) appears to accurately predict performance for many types of classn-gram
models using the sameγ = 0.938 value we found for wordn-gram models. The mean absolute
prediction error is 0.029 nats; the root mean squared error is 0.040 nats; the median absolute error
is 0.021 nats; and the maximum absolute error is 0.111 nats. These errors are comparable to those
found for wordn-gram models in Section 3.1.

It is interesting that eq. (7) works for class-based models despite their differences with word
models. The most notable difference is that class models are composed of two submodels, one for
word prediction and one for class prediction. However, note that for hard classing, we can remove
the sum from eq. (35) and get

log p(w1 · · ·wl) =
l+1∑
j=1

log p(cj |c1 · · · cj−1, w1 · · ·wj−1) +
l∑

j=1

log p(wj |c1 · · · cj , w1 · · ·wj−1)

(43)
wherecj = c(wj). That is, the cross-entropy of data (which is just a scaled log-likelihood) can be
decomposed into the sum of the cross-entropy of the word data and the cross-entropy of the class
data. It is not surprising that eq. (7) holds separately for the class prediction model predicting the
class data and the word prediction model predicting the word data, since each of these component
models are basicallyn-gram models. Summing, this explains why eq. (7) holds for the whole class
model.

In fact, one of the component models in the class models is not a puren-gram model, namely
the class prediction modelpng(cj |cj−2cj−1, wj−2wj−1) in modelM . This model contains the union
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training set (sents.)
1k 10k 100k 900k

conventional wordn-gram, modified KN
3g 488.4 270.6 168.2 121.5
4g 486.8 267.4 163.6 114.4

exponential wordn-gram
3g 486.6 268.0 164.3 118.7
4g 491.5 266.8 159.8 110.6

conventional IBM class model
3g, 50c 428.4 316.2 307.3 307.0
3g, 150c 381.1 259.4 232.1 223.1
3g, 500c 389.0 229.5 185.3 164.7
4g, 50c 442.8 320.1 295.3 285.9
4g, 150c 382.5 260.3 226.4 205.5
4g, 500c 388.1 226.9 179.7 152.9

interpolated IBM class model
3g, 50c 358.4 224.5 156.8 117.8
3g, 150c 346.5 210.5 149.0 114.7
3g, 500c 372.6 210.9 145.8 112.3
4g, 50c 362.1 220.4 149.6 109.1
4g, 150c 346.3 207.8 142.5 105.2
4g, 500c 371.5 207.9 140.5 103.6

training set (sents.)
1k 10k 100k 900k

modelS, exponential IBM class model
3g, 50c 391.5 320.1 309.7 310.1
3g, 150c 360.9 259.7 232.6 224.9
3g, 500c 386.6 233.2 184.5 164.9
4g, 50c 399.5 317.2 294.2 287.6
4g, 150c 363.3 258.3 222.4 203.8
4g, 500c 388.5 230.5 177.3 150.2

modelM , medium model
3g, 50c 341.5 210.0 144.5 110.9
3g, 150c 342.6 203.7 140.0 108.0
3g, 500c 387.5 212.7 142.2 108.1
4g, 50c 345.8 209.0 139.1 101.6
4g, 150c 344.1 202.8 135.7 99.1
4g, 500c 390.7 211.1 138.5 100.6

modelL , large model
3g, 50c 352.9 215.6 147.3
3g, 150c 351.3 210.0 145.2
3g, 500c 393.9 216.2 145.7
4g, 50c 353.2 214.6 144.7
4g, 150c 351.3 208.3 142.0
4g, 500c 396.8 214.5 142.4

Table 8: WSJ perplexity results. The best performance for each training set size for each model
type is highlighted in bold.

of features found in two separaten-gram models. Referring back to Section 3.2, we hypothesize
that the distribution of discounts with respect toλ̃i in this model is very similar to that for a pure
n-gram model, and so eq. (7) still applies.

5.2 Perplexity Comparison of Various Class-Based Models

In this section and the next, we compare how our novel class-based model, modelM , stacks up
against state-of-the-art class-based models, both exponential and non-exponential, in terms of per-
plexity and speech recognition word-error rate. We use the same training sets and models as in the
last section, but construct new development and evaluation sets from the Wall Street Journal CSR
Corpus (Doddington, 1992; Paul and Baker, 1992). We extract all of the “verbalized punctuation”
data from the training and test portions of this corpus. From this, we randomly select 2439 utter-
ances (46888 words), each generated from a unique prompt ID, as our evaluation set. From the
remaining verbalized punctuation data, we select 977 utterances (18279 words) as our development
set. The development set is used to tune interpolation weights for interpolated models and to tune
the acoustic weight used in the speech recognition experiments.17

We compare the following model types: conventional (i.e., non-exponential) wordn-gram mod-
els; exponential wordn-gram models; conventional IBM classn-gram models; conventional IBM
classn-gram models interpolated with conventional wordn-gram models (Brown et al., 1992);
modelS (i.e., an exponential IBM class model); modelM ; and modelL . We build both 3-gram and

17Unlike in the performance prediction experiments, we no longer satisfy the assumption that the training and test data
come from the same underlying distribution, as is the typical case in practice.
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4-gram models of each type for each of the training set sizes of 1k, 10k, 100k, and 900k sentences
(except for modelL on the largest training set size). For the class models, we do runs using 50,
150, and 500 classes. All conventional (word and class)n-gram models are smoothed with modi-
fied Kneser-Ney smoothing (Chen and Goodman, 1998), except for the modelsp(wj |cj) in the IBM
class models. These models are unsmoothed except that words with no count are given a count of
1 (with the appropriate class). All exponential models are regularized with`1 + `2

2 regularization
with the hyperparameters(α = 0.5, σ2 = 6). Note: Because word classes are constructed using
only the largest training set, results for word models and class models are not directly comparable
except for the largest training set. Results for different class models are comparable across all data
sets. Note that the conventional class model interpolated with the conventional word model repre-
sents that most popular state-of-the-art class-based model in the literature; it is also the only model
here that uses the development set to tune interpolation weights. Interpolation weights are chosen
to optimize the perplexity of the development set.

We display the perplexities of these models on the evaluation set in Table 8. As expected,
the performances of conventional and exponential wordn-gram models are quite similar, as are
the performances of the conventional and exponential IBM class models except on the smallest
training set. We attribute this difference to the primitive smoothing used in the conventional model
for p(wj |cj). As mentioned above, word and class model results are incomparable except for the
largest training set. On this training set, the IBM class models are much worse than the wordn-gram
models, but the interpolated class model is slightly better as is consistent with previous results,e.g.,
(Brown et al., 1992; Martin et al., 1995).

Next, we compare the other class models with the state-of-the-art interpolated class model. As
expected, the interpolated IBM class model outperforms the IBM class model alone, both conven-
tional and exponential, across the board. If we compare the best performance for modelL at each
training set size with that of the interpolated class model, we see that the interpolated model ap-
pears slightly better. ModelM performs best of all (even without interpolating with a wordn-gram
model), outperforming the interpolated model on every training set and achieving its largest re-
duction in perplexity (4%) on the largest training set. While these perplexity reductions are quite
modest, what matters more is the performance of these models in applications, and we investigate
speech recognition performance in the next section.

The most widely-used baseline models in the language modeling literature are conventional
word trigram models. On the largest training set, modelM achieves an 18% reduction in perplexity
(99.1vs.121.5) with respect to this baseline.18

5.3 Word-Error Rate Comparison of Various Class-Based Models

For the speech recognition experiments, we use a cross-word quinphone system built from 50 hours
of Broadcast News data. The system contains 2176 context-dependent states and a total of 50336
Gaussians. The front end is a 13-dimensional PLP front end with cepstral mean subtraction; each
frame is spliced together with four preceding and four succeeding frames and then LDA is per-
formed to yield 40-dimensional feature vectors. To evaluate our language models, we use lattice
rescoring. We generate lattices on both our development and evaluation data sets using the LattAIX
decoder (Saon et al., 2005) in the Attila speech recognition system (Soltau et al., 2005). The lan-
guage model for lattice generation is created by building a modified Kneser-Ney-smoothed word
trigram model on our largest WSJ training set; this model is then pruned to contain a total of about

18The most widely-used smoothing method in the literature for baselinen-gram models is Katz smoothing (Katz,
1987), not modified Kneser-Ney smoothing as used here. We report results for Katz smoothing in Table 12.
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training set (sents.)
1k 10k 100k 900k

conventional wordn-gram, modified KN
3g 34.5% 30.5% 26.1% 22.6%
4g 34.5% 30.4% 25.7% 22.3%

exponential wordn-gram
3g 34.6% 30.4% 25.7% 22.5%
4g 34.6% 30.7% 25.6% 22.2%

conventional IBM class model
3g, 50c 32.5% 30.4% 30.0% 30.1%
3g, 150c 31.7% 29.0% 27.8% 27.4%
3g, 500c 32.3% 28.6% 26.0% 24.4%
4g, 50c 32.5% 30.4% 29.5% 29.3%
4g, 150c 31.6% 28.9% 27.5% 26.5%
4g, 500c 32.4% 28.5% 25.8% 23.9%

interpolated IBM class model
3g, 50c 32.2% 28.7% 25.2% 22.5%
3g, 150c 31.8% 28.1% 25.0% 22.3%
3g, 500c 32.5% 28.5% 24.5% 22.1%
4g, 50c 32.2% 28.6% 25.0% 22.0%
4g, 150c 31.8% 28.0% 24.6% 21.8%
4g, 500c 32.7% 28.3% 24.5% 21.6%

training set (sents.)
1k 10k 100k 900k

modelS, exponential IBM class model
3g, 50c 31.6% 30.3% 29.9% 30.1%
3g, 150c 31.2% 28.8% 27.6% 27.3%
3g, 500c 32.2% 28.5% 25.8% 24.3%
4g, 50c 31.7% 30.1% 29.4% 29.1%
4g, 150c 31.3% 28.8% 27.3% 26.1%
4g, 500c 32.4% 28.5% 25.6% 23.6%

modelM , medium model
3g, 50c 30.8% 27.4% 24.0% 21.7%
3g, 150c 31.0% 27.1% 23.8% 21.5%
3g, 500c 32.3% 27.8% 23.9% 21.4%
4g, 50c 30.8% 27.5% 23.9% 21.2%
4g, 150c 31.0% 27.1% 23.5% 20.8%
4g, 500c 32.4% 27.9% 24.1% 21.1%

modelL , large model
3g, 50c 31.0% 27.3% 23.9%
3g, 150c 31.1% 27.2% 23.9%
3g, 500c 32.5% 27.8% 24.1%
4g, 50c 31.0% 27.4% 23.8%
4g, 150c 31.0% 27.3% 23.6%
4g, 500c 32.4% 28.0% 23.9%

Table 9: WSJ lattice rescoring results; all values are word-error rates. The best performance for each
training set size for each model type is highlighted in bold. Each 0.1% in error rate corresponds to
about 47 errors.

350kn-grams using the algorithm of Stolcke (1998). The silence token is treated as a transparent
word with probability 0.1. The word-error rate of the first-pass decoding is 27.7% and the oracle
error rate of the generated lattices is 9.6%.

We choose the acoustic weight for each model to optimize the lattice rescoring error rate of that
model on the development set; we do a Powell search to find the best weight with a granularity
of 0.005. The minimum weight selected is 0.055, and the maximum weight selected is 0.085.
Generally, the better the language model, the lower the optimal acoustic weight. In rescoring, we
also treat the silence token as a transparent word with probability 0.1.

In Table 9, we display the word-error rates for various models. We focus on the performance
of modelM , which achieved the best perplexities in the last section and which achieves the best
word-error rates here. If we compare the best performance of modelM at each training set size with
that of the state-of-the-art interpolated class model, we find that modelM is superior by 0.8–1.0%
absolute. These gains are much larger than are suggested by the modest perplexity gains of model
M over the interpolated model; as has been observed earlier, perplexity is not a reliable predictor
of speech recognition performance. While we can only compare class models with word models on
the largest training set, for this training set modelM outperforms the baseline conventional word
trigram model by 1.8% absolute. We situate these results with respect to other results reported for
class-based language models in Section 7.2.

One natural question to ask is that if perplexity is not an accurate predictor of word-error rate
and application performance is our ultimate goal, why does it make sense to predict and optimize
test set perplexity (or equivalently, cross-entropy)? We note that while improved perplexity does
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Figure 15: Graph of word-error ratevs.perplexity on WSJ data set for conventional and exponential
versions of wordn-gram models and IBM class models for different training set sizes,n-gram
orders, and numbers of classes.

not necessarily lead to improved word-error rate when comparing models of different types, word-
error rate is generally monotonic in perplexity when considering different models of thesametype,
e.g., (Chen and Goodman, 1998). In Figures 15 and 16, we plot word-error ratevs. perplexity
for all of the evaluated models. For a given model type, word-error rate is largely monotonic in
perplexity; however, some model types tend to have better word-error rates than others given the
same perplexity. For example, in Figure 15, we see that the exponential versions of the IBM class
model tend to have slightly better word-error rates for the same perplexity as compared to the
conventional versions. In Figure 16, we see that modelsM andL tend to have significantly better
word-error rates for the same perplexity as compared to the interpolated IBM class model.

6 Domain Adaptation

In this section, we introduce another heuristic for improving exponential models and show how this
heuristic can be used to motivate minimum discrimination information (MDI) models for domain
adaptation (Della Pietra et al., 1992). We show that eq. (7) can accurately predict cross-entropy
performance for MDI models and compare this method against other adaptation techniques in both
perplexity and word-error rate.

To motivate this new heuristic, we reexamine eq. (25). We note that ifEp̃[fi]−Ep∗ [fi] = 0 for
a featurefi, then the feature does not affect the difference between test and training cross-entropy
(ignoring its impact on the last term). If we can somehow add features withEp̃[fi] − Ep∗ [fi] ≈ 0
to a model such that training performance remains unchanged while the remaining features shrink
in size, then test performance should be improved.
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Figure 16: Graph of word-error ratevs.perplexity on WSJ data set for interpolated IBM class model
and modelsM andL for different training set sizes,n-gram orders, and numbers of classes.

Let’s say we have a modelpΛ̃ estimated from one training set and a “similar” modelq estimated
from an independent training set. Imagine we useq as aprior model forpΛ; i.e., we make a new
modelp′Λnew as follows:

p′Λnew(y|x) = q(y|x)
exp(

∑F
i=1 λnew

i fi(x, y))
ZΛnew(x)

(44)

Then, let us chooseΛnew such thatp′Λnew(y|x) = pΛ̃(y|x) for all x, y (assuming this is possible).
If q is “similar” to pΛ̃, then we expect the size1D

∑F
i=1 |λnew

i | of p′Λnew to be less than that ofpΛ̃.
Since they describe the same distribution, their training cross-entropy will be the same. If eq. (7)
still holds for this scenario, then we expectp′Λnew to have better test performance thanpΛ̃.

For this analysis to hold, we need to show thatEp̃[f
q
i ] − Ep∗ [f

q
i ] ≈ 0 for featuresf q

i in q
(assumingq is an exponential model), so that it is safe to ignore these features in eqs. (25) and (7).
We note thatq is derived from an independent data set and by assumption, the training and test set
for p come from the same distribution. It follows that we expectEp̃[f

q
i ] − Ep∗ [f

q
i ] to be zero for

all features inq. We empirically validate that eq. (7) holds for these types of models later in this
section. As in Section 4, in general, the parameter valuesΛnew will not be the regularized parameter
estimates forp′, and we hypothesize that optimizing the regularization objective function forp′ will
improve test performance further.

In summary, this analysis suggests the following method for improving the performance of an
exponential model:

Heuristic 2 Find a “similar” distribution estimated from an independent training set, and use this
distribution as a prior.
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Figure 17: Graph of optimism on evaluation datavs. 1
D

∑F
i=1 |λ̃i| for various models. The large

points correspond to MDI models over differentn-gram orders and in-domain training set sizes.
The small points represent regular wordn-gram models over several domains, and are identical
to the points from Figure 1. The line represents the predicted optimism according to eq. (7) with
γ = 0.938.

While we do not define what it means for a distribution to be similar except by whether it empirically
shrinks the size of the original model and/or improves test performance, this heuristic can still be
used effectively in practice.

For example, it is straightforward to apply this heuristic to the task of domain adaptation for
language modeling. In the usual formulation of this task, we have a test set and a small training
set from the same domain, and a large training set from a different domain. The task is to use the
data from the outside domain to maximally improve language modeling performance on the target
domain. By Heuristic 2, we can build a language model on the outside domain, and then use this
model as the prior model for a language model built on the in-domain data. This method is identical
to the MDI method for domain adaptation, except that we also apply regularization.

To evaluate whether eq. (7) holds for exponential language models with prior distributions, we
use the same WSJ training and evaluation sets from domainE as in Section 5.1. Our out-of-domain
data is the 100k sentence Broadcast News training set from domainF. We consider three differ-
ent training set sizes for our in-domain (WSJ) data: 1k, 10k, and 100k sentences. First, we build
an exponentialn-gram model on the Broadcast News data using the regularization hyperparame-
ters found in Section 2.2. Then, we use this Broadcast News model as the prior modelq(y|x) in
eq. (44) when building an exponentialn-gram model on the in-domain data (again, using the same
regularization hyperparameters). We repeat the same process for both trigram models and 4-gram
models.

In Figure 17, we plot test minus training cross-entropy versus1
D

∑F
i=1 |λ̃i| for these models on

our WSJ evaluation set. The large points correspond to the adaptedn-gram models, while the small
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Heval Hpred Htrain
1
D

∑F
i=1 |λ̃i|

baselinen-gram model
1k 5.915 5.875 2.808 3.269
10k 5.212 5.231 3.106 2.265
100k 4.649 4.672 3.354 1.405

MDI n-gram model
1k 5.444 5.285 2.678 2.780
10k 5.031 4.973 3.053 2.046
100k 4.611 4.595 3.339 1.339

Table 10: Various statistics for trigram models built on WSJ training data. The first column is the
size of the (in-domain) training set in sentences. For the MDI models, ann-gram model built on
100k sentences of Broadcast News data is used as a prior.Heval is H(p∗, pΛ̃), the cross-entropy
of the evaluation data;Hpred is the predicted test cross-entropy according to eq. (7); andHtrain is
H(p̃, pΛ̃), the training cross-entropy. AllH values are in nats.

points replicate the points for wordn-gram models from Figure 1. As expected, eq. (7) appears to
work quite well for MDI models using the sameγ = 0.938 value as before. The mean absolute
prediction error is 0.077 nats; the root mean squared error is 0.095 nats; the median absolute error
is 0.058 nats; and the maximum absolute error is 0.159 nats. These errors are somewhat larger
than those found for wordn-gram models in Section 3.1, but the correlation between optimism and
model size is still very good.

In Table 10, we display various statistics for trigram models built on varying amounts of in-
domain data when using a Broadcast News prior and not. Across training sets, the MDI models
are both smaller in1

D

∑F
i=1 |λ̃i| and have better training cross-entropy than the unadapted models

built on the same data. By eq. (7), it seems likely that the adapted models will have better test
performance and we verify this in the next section.

6.1 Comparison of Various Domain Adaptation Methods

In this section, we examine how MDI adaptation compares to other state-of-the-art methods for
domain adaptation in both perplexity and speech recognition word-error rate. For these experiments,
we use the same training sets as before, but we use the development and evaluation data sets from
Section 5.2. As before, the development set is used to tune interpolation weights for interpolated
models and to tune the acoustic weights used in the speech recognition experiments. Interpolation
weights are chosen to optimize the perplexity of the development set and acoustic weights are
chosen to optimize word-error rate. We use the same speech recognition system and lattice rescoring
setup as in Section 5.3.

The most widely-used techniques for domain adaptation are linear interpolation and count merg-
ing. In linear interpolation, separaten-gram models are built on the in-domain and out-of-domain
data and are interpolated together (Jelinek et al., 1991). In count merging, the in-domain and out-
of-domain data are concatenated into a single training set, and a singlen-gram model is built on
the combined data set (Iyer et al., 1997; Bacchiani et al., 2006). The in-domain data set may be
replicated several times to more heavily weight this data. Finally, we also consider the baseline of
not using the out-of-domain data at all,i.e., just building ann-gram model on the in-domain data.

In Table 11, we display perplexity and word-error rates for all of the models under consideration,
for both trigram and 4-gram models and with varying amounts of in-domain training data. In all
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in-domain training (sents.)
1k 10k 100k

in-domain data only
3g 488.4 270.6 168.2
4g 486.8 267.4 163.6

count merging
3g 503.1 290.9 170.7
4g 497.1 284.9 165.3

interpolated model
3g 328.3 234.8 162.6
4g 325.3 230.8 157.6

MDI model
3g 296.3 218.7 157.0
4g 293.7 215.8 152.5

in-domain training (sents.)
1k 10k 100k

in-domain data only
3g 34.5% 30.5% 26.1%
4g 34.5% 30.4% 25.7%

count merging
3g 30.4% 28.3% 25.2%
4g 30.0% 28.0% 25.3%

interpolated model
3g 30.3% 28.5% 25.8%
4g 30.3% 28.4% 25.2%

MDI model
3g 30.0% 28.0% 24.9%
4g 29.6% 27.9% 24.9%

Table 11: WSJ perplexity and lattice rescoring results for domain adaptation models. The first
three models are composed of modified Kneser-Ney-smoothedn-gram models; the last model is an
exponential model using̀1 + `2

2 regularization. The best performance for each training set size for
each model type is highlighted in bold. Each 0.1% in error rate corresponds to about 47 errors.

experiments, 100k sentences of out-of-domain (Broadcast News) data is used. The last model cor-
responds to the exponential MDI model; all other methods employ conventional (non-exponential)
n-gram models with modified Kneser-Ney smoothing. In count merging, only one copy of the in-
domain data is included in the training set. Including more copies does not improve the word-error
rate on the evaluation set and improves the perplexity only slightly. For example, with three copies
of the in-domain data, the trigram model perplexity improves from 503.1 to 498.8 when using 1k
sentences of in-domain data and from 290.9 to 280.0 when using 10k sentences.

Looking first at perplexity, we see that count merging does even worse than the baseline of not
using any out-of-domain training data. Both interpolated and MDI models are substantially better
than the baseline, with MDI outperforming linear interpolation by about 10% in perplexity on the
smallest data set and 3% in perplexity on the largest.

In terms of word-error rate, all three adaptation techniques do significantly better than the base-
line. Despite the poor showing in perplexity, count merging does at least as well as interpolation
across all training sets. MDI models perform best of all, outperforming interpolation on each train-
ing set by 0.3–0.7% absolute, and outperforming count merging by 0.1–0.4% absolute.19

7 Related Work

Here, we discuss related word in performance prediction, class-based language modeling, and do-
main adaptation.

7.1 Performance Prediction

We group performance prediction methods into two categories:non-data-splittingmethods and
data-splittingmethods. In non-data-splitting methods, test performance is directly estimated from

19We note that the in-domain data contains verbalized punctuation while in the Broadcast News data, punctuation is
deleted. Thus, results on data sets where this mismatch is not present may be somewhat different. On the other hand, the
fact that MDI works well under these conditions is evidence of its robustness.
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training set performance and/or other statistics of a model. Data-splitting methods involve partition-
ing training data into two parts, a truncated training set and a surrogate test set. The performance
on the surrogate test set of a model estimated from the truncated training set (perhaps averaged over
several splits) is taken as a proxy for the true test performance of that model.

The most popular non-data-splitting methods for predicting test set cross-entropy (or likeli-
hood) are the Akaike Information Criterion (AIC) and variants such as AICc, quasi-AIC (QAIC),
and QAICc (Akaike, 1973; Akaike, 1974; Hurvich and Tsai, 1989; Lebreton et al., 1992); other re-
lated methods include Mallows’Cp for least squares regression and the Takeuchi Information Crite-
rion (TIC) (Mallows, 1973; Takeuchi, 1976). As seen in eq. (6), AIC can be used to predict the test
cross-entropy of a model from the number of model parameters and its training cross-entropy (using
maximum likelihood parameter estimates). However, as noted earlier, maximum likelihood param-
eter estimates do not generally perform well in language modeling. In Section 3.1, we considered
performance prediction formulae with the same form as AIC and AICc (except using regularized
parameter estimates), and neither performed nearly as well as eq. (7);e.g., see Table 4 and Figure 2.

There are many techniques for bounding test set classification error including the Occam’s Razor
bound (Blumer et al., 1987; McAllester, 1999), PAC-Bayes bound (McAllester, 1999), and the
sample compression bound (Littlestone and Warmuth, 1986; Floyd and Warmuth, 1995). These
methods derive theoretical guarantees that the true error rate of a classifier will be below (or above)
some value with a certain probability. Langford (2005) evaluates these techniques over many data
sets; while the bounds can sometimes be fairly tight, in many data sets the bounds are quite loose.

When learning an element from a set of target classifiers, the Vapnik-Chervonenkis (VC) di-
mension of the set can be used to bound the true error rate relative to the training error rate with
some probability (Vapnik and Chervonenkis, 1971; Vapnik, 1998); this technique has been used to
compute error bounds for many types of classifiers. Extensions of this method include methods that
bound the true error rate based on the fat-shattering dimension of a set of target classifiers,e.g.,
(Bartlett, 1998), and methods that bound error based on the training set margins of a classifier,e.g.,
(Schapire et al., 1998). Bartlett (1998) shows that for a neural network with small weights and small
training set squared error, the true error depends on the size of its weights rather than the number of
weights; this finding is similar in spirit to eq. (7).

One key difference between our work and other work is that the vast majority of previous non-
data-splitting methods use theoretical analysis to derive their predictions of test performance. Here,
we developed eq. (7) on a purely empirical basis.

Because of the connection between performance prediction and model selection, we briefly
discuss Bayesian methods for model selection. In the Bayesian paradigm, one determines a prior
distributionp(pΛ) over model structures and/or parameters. From this, we can compute the posterior
probability of a model given training data:

p(pΛ|D) ∝ pΛ(D)p(pΛ) (45)

Then, one can select the single most probable model or model class as in maximuma posteri-
ori (MAP) estimation.20 The most popular model selection methods of this type are probably the
Bayesian Information Criterion (Schwarz, 1978) and the Minimum Description Length principle
(Rissanen, 1978). We note that the right hand side in eq. (7) has the same form as the`1 regulariza-
tion objective function in eq. (8) and that`1 regularization is an instance of MAP estimation. Thus,
eq. (7) suggests the use of a particular prior distribution in Bayesian estimation. However, we note

20Another approach is Bayesian Model Averaging in which a model is produced by interpolating candidate models
weighted by their posterior probability (Leamer, 1978).

36



training set (sents.)
1k 10k 100k 900k

3g 579.3 317.1 196.7 137.5
4g 592.6 325.6 202.4 136.7

training set (sents.)
1k 10k 100k 900k

3g 35.5% 30.7% 26.2% 22.7%
4g 35.6% 30.9% 26.3% 22.7%

Table 12: WSJ perplexity and lattice rescoring word-error rate results for Katz-smoothed word
n-gram models.

that the goal of eq. (7) is accurate performance prediction, while the point of MAP estimation is
to find the mostlikely model. As these two criteria are very different, it is unclear why we should
expect that a “prior” that works well for one objective is also suitable for the other.

In practice, the most accurate methods for performance prediction in most contexts are data-
splitting methods (Guyon et al., 2006). These techniques include the hold-out (or split-sample)
method; leave-one-out andk-fold cross-validation; and bootstrapping (Allen, 1974; Stone, 1974;
Geisser, 1975; Stone, 1977; Craven and Wahba, 1979; Stone, 1979; Efron, 1983; Efron, 1993; Ko-
havi, 1995; Shao, 1997). In the hold-out method, a single split of the training data is performed and
performance on the held-out set is taken as an estimate of test performance. In the other methods,
performance is averaged over multiple data splits. While accurate, the methods that involve multiple
splits can be computationally expensive since models have to be rebuilt for each split. More impor-
tantly, unlike non-data-splitting methods, these methods do not lend themselves well to providing
insight into model design as discussed in Section 8.2.

7.2 Class-Based Language Models

Since many previous papers use Katz-smoothed wordn-gram models as baselines (Katz, 1987),
we compute perplexities and word-error rates for Katz-smoothed models on our data sets from
Section 5.2 and display them in Table 12. Another issue is that as we built word classes using
only our largest data set, our class model results are comparable with our word model results only
for this data set. To address this, we also build word classes on our 100k sentence (2.6M word)
training set, and compute perplexities and word-error rates for modelM with these new classes
and this training set using the best settings found previously (4-gram model, 150 classes). This
results in a perplexity of 143.5 and a word-error rate of 24.1% (as compared to 135.7 and 23.5%
using the original classes). The perplexity and word-error rate of modelM using our 900k sentence
(23M word) training set (from Tables 8 and 9) are 99.1 and 20.8%, respectively. This translates to
reductions in perplexity of 27% and 28% over a Katz-smoothed word trigram baseline for our 100k-
sentence and 900k-sentence training sets, respectively, and corresponding reductions in word-error
rate of 2.1% and 1.9% absolute.

In the following sections, we survey the most closely-related class-based language models in
the literature. To situate the quality of our results, we also survey the best perplexity and speech
recognition word-error rate results reported for class-based language models relative to conventional
wordn-gram model baselines. While many different data sets are used in previous work so that most
results are not directly comparable, we find that our results are very competitive with the existing
results in the literature. The largest reported reductions in perplexity we found over a Katz-smoothed
trigram model are 53% for a SuperARV language model (Wang and Harper, 2002) and about 25%
for the modelfullibmpredictproposed by Goodman (2001). The largest reported decrease in speech
recognition word-error rate we found over a Katz-smoothed trigram model is 2.2% absolute for a
multi-class composite language model (Yamamoto et al., 2003); almost all other improvements are
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training set (sents.)
1k 10k 100k 900k

conventional wordn-gram, Katz
3g 24.2% 20.2% 16.1% 13.3%
4g 24.3% 20.3% 16.2% 13.2%

conventional wordn-gram, modified KN
3g 23.6% 19.4% 15.3% 12.7%
4g 23.4% 19.3% 15.3% 12.5%

interpolated IBM class model
3g, 50c 20.9% 17.7% 14.8% 12.6%
3g, 150c 20.6% 17.1% 14.2% 12.3%
3g, 500c 21.3% 17.1% 13.9% 12.1%
4g, 50c 21.1% 17.5% 14.7% 12.2%
4g, 150c 20.5% 17.3% 14.2% 11.9%
4g, 500c 21.2% 17.0% 13.9% 11.8%

modelM , medium model
3g, 50c 19.9% 16.7% 13.8% 11.8%
3g, 150c 20.0% 16.2% 13.1% 11.7%
3g, 500c 21.4% 17.2% 13.5% 11.5%
4g, 50c 20.0% 16.6% 13.6% 11.4%
4g, 150c 20.0% 16.6% 13.2% 11.3%
4g, 500c 21.7% 17.3% 13.4% 11.2%

Table 13: WSJ lattice rescoring results with improved acoustic models; all values are word-error
rates. The best performance for each training set size for each model type is highlighted in bold.
Each 0.1% in error rate corresponds to about 30 errors.

considerably smaller. Before we continue, we first analyze whether it makes more sense to compare
absolute word-error rate reductions or relative ones.

7.2.1 Comparing Relative and Absolute Word-Error Rate Differences Between Language
Models

In the language modeling literature, some papers report relative word-error rate improvements while
other papers report absolute word-error rate improvements. In our discussion of related work, we
report all gains as absolute word-error rate differences, as absolute word-error rate improvements
for a language model tend to be relatively stable regardless of the baseline word-error rate, whereas
relative word-error rate improvements are very sensitive to the baseline word-error rate. To demon-
strate this effect, we construct an additional acoustic model using about nine hours of training data
from the Wall Street Journal CSR Corpus (disjoint from our evaluation set built from this corpus).
Because of the small amount of acoustic data we have from this source, our acoustic training set
includes our original development set, and we create a new development set (900 utterances, 17342
words) and new evaluation set (1539 utterances, 29546 words) by randomly splitting our original
evaluation set into two parts. The development set is used to tune the acoustic weight used with
each language model. The new acoustic model is a cross-word triphone system with 386 context-
dependent states and a total of 28487 Gaussians; the front end and lattice generation language model
is the same as used in Section 5.3. The word-error rate of the first-pass decoding is 16.7% and the
oracle error rate of the generated lattices is 7.0%. Despite the smaller amount of acoustic training
data and smaller size, this acoustic model has substantially better performance than our Broadcast
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News acoustic model since it is trained on data from the same source as the test data.
We display lattice rescoring word-error rates for several language models in Table 13. These

results are directly comparable to those in Tables 9 and 12 except for the change in acoustic model;
the language models being evaluated are identical. Note that all error rates have shifted down around
10% absolute; this suggests that absolute word-error rate differences between models are about the
same, while relative word-error rates differences are much changed. For example, the word-error
rate difference between the best and worst modified Kneser-Ney-smoothed wordn-gram models is
12.2% absolute in Table 9 (34.5%vs.22.3%), while in Table 13 this difference is 11.1% absolute
(23.6%vs.12.5%). Translated to relative reductions in word-error rate, the reduction changes from
35% to 47%. To give another example, the difference between modelM on the largest training set
and a Katz-smoothed word trigram model is 1.9% absolute and 2.1% absolute for the two acoustic
models, while the relative reductions in error rate are 8% and 16%;i.e., the relative reduction
doubles when the baseline word-error rate is approximately halved. Clearly, relative error rate
reductions depend strongly on the baseline error rate, so absolute error rate improvements are a
better representation of language model performance.

7.2.2 Class-Based Language Models with Separate Models for Class and Word Prediction

We survey related work by category. The most common type of class-based language model de-
scribes a joint distribution over word and class sequences, where this distribution is decomposed
into separate conditional models for word prediction and class prediction as in eq. (35). Insoftclus-
tering, a word may belong to several different classes. Inhard clustering, each wordw is always
mapped to the same classc(w) regardless of context and we need not perform the sum in eq. (35);
we need only consider the class sequencec(w1) . . . c(wl).

The most widely-used class model is the model we refer to as the IBM class model (Brown et
al., 1992; Ney et al., 1994). For this model, we assume

p(cj |c1 · · · cj−1, w1 · · ·wj−1) ≈ p(cj |cj−2cj−1)
p(wj |c1 · · · cj , w1 · · ·wj−1) ≈ p(wj |cj) (46)

where the distributionsp(cj |cj−2cj−1) and p(wj |cj) are parameterized as conventionaln-gram
models. (In our discussion of related work, we describe only the trigram versions of each model.)
In the original formulation of this model, hard clustering is used. While this model can be superior
to wordn-gram models for small training sets, it performs poorly with larger training sets unless
interpolated with a wordn-gram model.

Martin et al. (1995) implement the IBM class model and compare different algorithms for in-
ducing word classes. On Wall Street Journal training sets ranging in size from 1M words to 38M
words, they achieve perplexity gains of up to 12% with an interpolated class model over a base-
line word trigram model. Niesler et al. (1998) propose a variant of the IBM class model with soft
clustering and variable-length classn-grams in the class prediction model. Using a 37M word WSJ
training set, they achieve gains over a baseline Katz-smoothed trigram model of up to 13% in per-
plexity and 1.1% absolute inN -best list rescoring word-error rate with an interpolated classn-gram
model. Samuelsson and Reichl (1999) propose an interpolated IBM class model where classes are
taken to be part-of-speech ambiguity classes and another model where a wordn-gram model is
modified to backoff to an IBM class model. Using a training corpus of 37M words of WSJ data, a
perplexity improvement of 4% is achieved over a Katz-smoothed trigram baseline as well as a 0.7%
absolute reduction in word-error rate.
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Another variant of IBM class models aremulti-class compositen-gram models (Yamamoto and
Sagisaka, 1999; Deligne, 2000; Deligne and Sagisaka, 2000; Isogai et al., 2001; Yamamoto et al.,
2003). These are calledcompositemodels because frequent word sequences can be concatenated
into single units within the model; the termmulti-classrefers to choosing different word clusterings
depending on word position, rather than using a single clustering across all word positions. In
experiments on the ATR spoken language database (Takezawa et al., 1998), Yamamoto et al. (2003)
report a reduction in perplexity of 9% and an increase in word accuracy of 2.2% absolute over a
baseline Katz-smoothed trigram model.

Instead of making the assumptions made by the IBM class model in eq. (46), one can make the
weaker assumption that word predictions and class predictions depend only on words and classes
up to two positions back (for trigram models),i.e.,

p(cj |c1 · · · cj−1, w1 · · ·wj−1) ≈ p(cj |cj−2cj−1, wj−2wj−1)
p(wj |c1 · · · cj , w1 · · ·wj−1) ≈ p(wj |cj−2cj−1cj , wj−2wj−1) (47)

Many parameterizations ofp(cj |cj−2cj−1, wj−2wj−1) andp(wj |cj−2cj−1cj , wj−2wj−1) have been
proposed. Our modelsM andL fall in this category.

Heeman and Allen (1997) describe a model where these two distributions are parameterized as
decision-tree language models (Bahl et al., 1989) and the word classes are taken to be part-of-speech
tags. In preliminary experiments on WSJ data using a training set of 79k words, a 15% reduction in
perplexity over a Katz-smoothed trigram baseline is achieved (Heeman, 1998).

The most closely-related class-based language model to modelM is one of the models described
by Goodman (2001). This paper compares many different class-based language models and the best
performing individual model is calledfullibmpredictand has the following form for trigram models:

p(cj |cj−2cj−1, wj−2wj−1) = λ p(cj |wj−2wj−1) + (1− λ) p(cj |cj−2cj−1)
p(wj |cj−2cj−1cj , wj−2wj−1) = µ p(wj |wj−2wj−1cj) + (1− µ) p(wj |cj−2cj−1cj) (48)

where each component model is a conventionaln-gram model. This is similar to modelM except
that linear interpolation is used to combine information from word and class histories, whereas we
combine word history features and class history features within a single exponential model. In
addition, there is no analog to the final term in eq. (48) in our model. One of our contrast models,
model L , is identical to another of the models described in this paper,indexpredict, except that
exponentialn-gram models are used for the component models instead of conventionaln-gram
models. (Another difference is thatfullibmpredictand indexpredictare multi-class models, while
our models use a single clustering for all word positions.)

Goodman (2001) runs experiments over a range of training set sizes using the North Ameri-
can Business news corpus (Stern, 1996). The largest reduction in perplexity achieved by a single
class-based model over the Katz-smoothed trigram model baseline is about 25%, by the model
fullibmpredict on a training set of 1M words. Speech recognition word-error rate results are re-
ported for the largest training set (284M words) usingN -best list rescoring. The best result for an
individual class-based model is an 0.5% absolute reduction in word-error rate (over a baseline error
rate of 9.8%).

The SuperARV language model (Wang and Harper, 2002; Wang et al., 2002; Wang et al., 2004)
is another class-based model in this category, where classes are based onabstract role valuesas
given by a Constraint Dependency Grammar (Harper and Helzerman, 1995). The distributions in
eq. (47) aren-gram models that back off to a variety of mixed word/class histories in a specific
order. Using a Wall Street Journal training set of about 930k words, a reduction in perplexity of
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about 29% is achieved over a Katz-smoothed trigram model baseline. Using a training set of about
37M words, a perplexity reduction of up to 53% is achieved as well as a decrease in word-error rate
of up to 1.0% absolute.

7.2.3 Class-Based Language Models that Jointly Predict a Word and Class as a Single Unit

Models in this category also describe a joint distribution over word and class sequences, but indi-
vidual words and classes are predicted jointly as a single unit:

p(w1 · · ·wl) =
∑

c1···cl

p(c1 · · · cl+1, w1 · · ·wl) (49)

=
∑

c1···cl

l+1∏
j=1

p((cj , wj)|c1 · · · cj−1, w1 · · ·wj−1) (50)

Galescu and Ringger (1999) describe a model of this type where part-of-speech tags are used
as classes; the model is a conventionaln-gram model except over word/tag pairs instead of words.
Using a 5M word WSJ training set, a reduction in perplexity of about 5% is achieved over a Witten-
Bell-smoothed trigram baseline (Witten and Bell, 1991).

Cui et al. (2007) also predict a word and its part-of-speech tag as a single unit, but instead of
using a conventionaln-gram model for prediction, they use an exponential model that includes
features for many different types of word/tag histories. Using a WSJ training set of 1M words, they
achieve perplexity reductions of up to 15% over a modified Kneser-Ney-smoothed trigram model.
With a 3M word Switchboard training set, a word-error rate reduction of up to 0.4% absolute is
achieved over a modified Kneser-Ney-smoothed 4-gram model.

7.2.4 Class-Based Language Models Consisting Only of a Word Prediction Model

In the final category of class-based language models we discuss, there is no class prediction model.
Instead, class information is used only in histories:

p(w1 · · ·wl) =
l+1∏
j=1

p(wj |w1 · · ·wj−1) (51)

=
l+1∏
j=1

p(wj |f(w1 · · ·wj−1)) (52)

Typically, hard clustering is used, and the functionf includes information about the class assign-
ments of words in the history.

Dupont and Rosenfeld (1997) proposelattice-basedlanguage models. Given a hierarchical
word clustering, a lattice ofn-gram models of the formp(wj |cj−n+1 . . . cj−1) is constructed for
differentn-gram orders and for classes at different levels in the class hierarchy. Then, the model
is a wordn-gram model where backoff occurs along the edges in the lattice to the models at each
node. A perplexity reduction of 6% is achieved with a 2.5M word Switchboard training set over a
baseline word trigram model.

Blasig (1999) describes a class-based model called acategory/word varigrammodel. This
model is similar to a wordn-gram model except backoff can be performed to arbitrary sequences of
words and word classes. Using a 39M word WSJ training set, a reduction of about 10% in perplex-
ity and about 0.8% absolute in word-error rate is achieved as compared to a baseline word varigram
model (Kneser, 1996).
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Whittaker and Woodland (2001) introduceone-sidedclass models of the formp(wj |cj−2cj−1)
(for trigram models). This model is parameterized as a conventionaln-gram model. When inter-
polated with a wordn-gram model, one-sided class models yield about the same performance as
interpolated IBM class models in both perplexity and word-error rate, but require less computation
for clustering (Whittaker and Woodland, 2003).

Zitouni et al. (2003) proposehierarchical classn-gram models. This model is like a wordn-
gram model except instead of backing off to successively shorter word histories, backoff is per-
formed by successively abstracting each word position to a more general class in a class hierarchy,
from farthest word to nearest. Zitouni (2007) reports results on Wall Street Journal data with a
56M word training set. A perplexity decrease of 6% is achieved over a baseline Katz-smoothed
trigram model; a word-error rate decrease of 0.9% to 1.2% absolute is achieved, depending on the
vocabulary size. A perplexity decrease of about 2% is achieved using a Switchboard training set of
3.5M words with a CALLHOME test set. Wang and Vergyri (2006) extend this technique by using
part-of-speech information in building the class hierarchy. On an Arabic CALLHOME corpus with
a training set of about 180k words, their “Model II” achieves a perplexity decrease of about 8% over
a baseline word trigram model. In single-passN -best list rescoring, gains of up to 1.2% absolute
are achieved over the baseline; when combined with a wordn-gram model and a factored language
model (Vergyri et al., 2004), gains increase to 1.7% absolute.21

7.3 Domain Adaptation

Here, we discuss methods for supervised domain adaptation that involve only the simple static
combination of in-domain and out-of-domain data or models. For a discussion of techniques using
word class, topic, syntax, or semantic information, an extensive survey of existing techniques for
language model adaptation is provided by Bellegarda (2004).

Linear interpolation is the most widely-used method for domain adaptation. Jelinek et al. (1991)
describe its use for combining a cache language model and static language model, and it has been
used in a vast number of papers since then. Another popular method is count merging; this has
been motivated as an instance of MAP adaptation (Federico, 1996; Masataki et al., 1997; Chen and
Huang, 1999). With respect to perplexity, linear interpolation tends to perform well while count
merging does not. In terms of word-error rate, both methods improve over the baseline of not
using out-of-domain data. Compared to each other, Iyer et al. (1997) found linear interpolation to
give better speech recognition performance while Bacchiani et al. (2006) found count merging to
be superior.

Della Pietra et al. (1992) introduce the idea of minimum discrimination information distribu-
tions. Given some prior modelq(y|x) (e.g., representing out-of-domain data), the goal is to find
the nearest model in Kullback-Liebler divergence that satisfies a set of linear constraints derived
from adaptation data. The model satisfying these conditions is an exponential model containing one
feature for each linear constraint withq(y|x) as its prior as in eq. (44). While this method has been
used many times for language model adaptation,e.g., (Kneser et al., 1997; Federico, 1999), MDI
models have not performed as well as linear interpolation in perplexity or word-error rate in previ-
ous work (Rao et al., 1995; Rao et al., 1997). One of the issues present when using this technique
is how to select the feature set (or equivalently, the linear constraints) specifying the model. With a
small amount of adaptation data, one should intuitively use a small feature set,e.g., just containing

21Wang and Vergyri (2006) also reportall-passrescoring results in which a language model is used in multiple decod-
ing passes,e.g., for acoustic model adaptation. In this case, language modeling gains can be magnified across the multiple
passes.
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unigram features. However, the use of regularization can obviate the need for intelligent feature
selection. For example, in this work we include alln-gram features present in the adaptation data
for n ∈ {3, 4}. Chueh and Chien (2008) propose the use of inequality constraints for regularization
(Kazama and Tsujii, 2003); here, we use`1 + `2

2 regularization instead. We hypothesize that the use
of state-of-the-art regularization is the primary reason why we achieve better performance relative
to interpolation and count merging as compared to earlier work.

In its original formulation, MDI models do not have a parameter analogous to the mixture
weight in interpolation or the in-domain replication factor in count merging. On one hand, having a
tunable parameter can improve test performance when one’s test data does not come from the same
distribution as one’s training data. On the other hand, this simplifies the implementation of MDI
models and we find that MDI is still able to outperform the other methods despite this difference.

8 Discussion

8.1 Regularization and Performance Prediction

This paper makes contributions in several areas. First, we demonstrate the effectiveness of`1 +
`2
2 regularization (Kazama and Tsujii, 2003) in language modeling. We show that this type of

regularization can outperform̀1 and`2
2 regularization alone by up to several percent in perplexity

for n-gram models. In addition, we show that a single hyperparameter setting,(α = 0.5, σ2 = 6),
works well forn-gram models across varying domains, vocabulary sizes, training set sizes, andn-
gram orders. As compared to optimizing hyperparameter values for each individual model, we lose
less than 0.01 nats (about 1% in perplexity) on average as compared to using this single setting. As
optimizing regularization hyperparameters can be expensive, this finding has significant practical
benefit. In addition to being effective for wordn-gram models, we find that̀1 + `2

2 regularization
appears to be effective for class-based models and domain adaptation models as well. While`1

regularization and̀2
2 regularization are used very widely,`1+`2

2 regularization is much less popular,
and these results suggest that further investigation of this regularization scheme is warranted.

Next, we show that for several types of exponential language models, it is possible to accurately
predict the cross-entropy of test data using the simple relationship given in eq. (7). When using
`1 + `2

2 regularization with(α = 0.5, σ2 = 6), the valueγ = 0.938 works well across varying
domains, vocabulary sizes, training set sizes, andn-gram orders, yielding a mean absolute error of
about 0.03 nats (3% in perplexity). We evaluate over 300 language models in total, including word
n-gram models, classn-gram models, andn-gram models with prior distributions. We show that the
optimal value ofγ depends on the regularization hyperparameters, and that we get better prediction
accuracy using̀1 + `2

2 regularization as opposed to`1 or `2
2 regularization alone.

We also provide an explanation for why this relationship holds. We show in eq. (25) that the
difference in test and training performance can be expressed as a simple function ofΛ̃ and the
differences in feature expectations between the training and test data. We find that eq. (7) is not
a perfect relationship, but that the absolute error tends to be quite small due to a combination of
factors. Sparse models tend to be dominated by single-countn-grams whose average discount is
fairly close toγ = 0.938. For non-sparse models, the average discount varies more, but because
this is effectively multiplied by the size of the model1

D

∑F
i=1 |λ̃i| which by assumption is small,

the overall absolute error is small. While eq. (7) holds across several types of exponential language
models, it won’t hold for all exponential models. For example, performance prediction will be poor
for extremely non-sparse models with large1

D

∑F
i=1 |λ̃i|.

One interesting connection is that to optimize test performance in parameter estimation, we have
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found that̀ 1+`2
2 regularization works best, while to optimize performance prediction accuracy (e.g.,

for model selection), we have found that an expression with the same form as the`1 regularization
objective function works best. It would have been quite elegant if these two criteria were the same;
then, the process of parameter estimation could seemingly be viewed as directly optimizing test
performance. However, this would not actually be the case, as our performance prediction formula
is accurate only for the regularized parameter estimates and not for arbitrary parameter values.

While there has been a great deal of work in performance prediction, the great majority of
work on non-data-splitting methods has focused on finding theoretically-motivated approximations
or probabilistic bounds on test performance. In contrast, we developed eq. (7) on a purely empirical
basis, and there has been little, if any, existing work that has shown comparable performance pre-
diction accuracy over such a large number of models and data sets. In addition, there has been little,
if any, previous work on performance prediction for language modeling.22 The most closely-related
performance prediction method to ours is probably AIC (Akaike, 1973). However, AIC is based
on maximum-likelihood parameter estimates, which perform poorly in language modeling, while
our method works with regularized parameter estimates. Empirically, we find our method to be
much more accurate than AIC-like measures for prediction, and unlike AIC, we correctly predict
that backoff features improve the performance ofn-gram models.

While eq. (7) performs well as compared to other non-data-splitting methods for performance
prediction, the prediction error can be several percent in perplexity, which means we cannot reliably
rank models that are close in quality. In addition, data-splitting methods are the most accurate per-
formance prediction methods in many contexts (Guyon et al., 2006). Finally, in speech recognition
and many other applications of language modeling, an external test set is typically provided, which
means we can measure the relevant test set performance directly rather than estimate it from training
statistics. Thus, in practice, eq. (7) is not terribly useful for the task of model selection, one of the
main applications of performance prediction. However, what eq. (7) gives us is insight intomodel
design.

8.2 Model Design

The task of model selection deals primarily with selecting between candidate modelsonce they have
been built. However, it can be expensive to implement various models, and thus it is desirable to be
able to select between models at themodel designstage. Being able to intelligently compare models
(without implementation) requires that we know which aspects of a model impact test performance,
and this is exactly what eq. (7) (and other criteria for non-data-splitting performance prediction)
tell us. While we may not be able to accurately guess what the training cross-entropy or size
1
D

∑F
i=1 |λ̃i| of a model is, at least we have a framework for thinking about these issues, and this is

certainly better than trying to guess evaluation performance in a vacuum.
Intuitively, simpler models should perform better on test data given equivalent training per-

formance, and model structure (as opposed to its parameter values) is an important aspect of the
complexity of a model. Accordingly, there have been many methods for model selection that mea-
sure the size of a model in terms of the number of features or parameters in the model,e.g., (Akaike,
1973; Rissanen, 1978; Schwarz, 1978). Surprisingly, for exponential language models, the number
of model parameters seems to matter not at all; all that matters are the magnitudes of the parameter
values, as evidenced by both eq. (25) and the accuracy of eq. (7). Consequently, one can improve ex-

22Here, we refer to predicting test set performance from training set performance and other model statistics. However,
there has been a good deal of work on predicting test set speech recognition word-error rate from test set perplexity and
other statistics,e.g., (Klakow and Peters, 2002).
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Figure 18: Graph of training set cross-entropy as well as predicted and actual evaluation set cross-
entropyvs.training set size for bigram models from domainC (WSJ, 300 word vocabulary).

ponential language models by adding features (or a prior model) that reduce parameter values while
maintaining training performance, and from this observation we develop Heuristics 1 and 2. These
are general techniques that can be used to develop novel exponential models as well as explain the
performance of existing ones.

We can also gain insight into other aspects of model design,e.g., the impact of training set
size on model design. In Figures 18 and 19, we plot how training set performance and evaluation
set performance vary according to training set size for two different WSJ models: bigram models
built on a 300 word vocabulary, and 5-gram models built on a 21k word vocabulary. The former
represents a non-sparse model, while the latter is rather sparse.

One somewhat unintuitive point is that training performance generallydegradesas training set
sizes increase; the reason that evaluation performance improves is solely because the model size
decreases. To understand the reason why, consider the case where the target distribution is a uniform
unigram distribution. Clearly, the more training data there is, the more uniform the estimated model
becomes, and the worse the training set performance is (as non-uniform models can achieve better
performance on non-uniform data than a uniform model on uniform data). Intuitively, training
cross-entropy increases with more training data because the model cannot overfit the data as much.

What this tells us is that for a model with a fixed number of parameters, evaluation performance
will essentially stop improving once the training set size passes some point, and that this point will
be reached when the model size per event1

D

∑F
i=1 |λ̃i| becomes small enough. In practice, once

1
D

∑F
i=1 |λ̃i| becomes less than a few hundredths of a nat, evaluation cross-entropy likely won’t

improve significantly with more training data. We see this effect occurring for the trigram version
of modelS with 50 classes in Table 8; performance saturates with a training set of 100k sentences.
As shown in Table 7, the size of modelS on this training set is only 0.029 nats/event. Once this
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Figure 19: Graph of training set cross-entropy as well as predicted and actual evaluation set cross-
entropyvs.training set size for 5-gram models from domainE (WSJ, 21k word vocabulary).

point is reached, to improve test performance it is necessary to improve training performance in
some way,e.g., by increasing the model size. For example, one can increase the model ordern
if using ann-gram model; the number of classes if using a class-based model; or one can have
separate features for separate subdomains of the training data as in Section 6.

Not only can we derive general observations about model design from eq. (7), but we can also
apply these observations to better understand various aspects of language modeling and improve
language modeling performance. Using this relationship, we show how aspects of language mod-
eling as diverse as backoffn-gram features, class-based models, and domain adaptation can all be
explained as a simple tradeoff between training performance and model size. We can frame perfor-
mance improvements in all of these areas as methods that decrease model size without degrading
training set performance. Notably, using Heuristic 1, we developed a novel and simple class-based
language model that achieves perplexity and speech recognition word-error rate improvements com-
petitive with the best reported results for class-based models in the literature.

Clearly, there is much possible follow-on work. While we have shown that eq. (7) applies to
several types of exponential language models, we have only partially characterized the types of
models that it doesnot apply to. In addition, it would be interesting to see whether these ideas
can be extended to non-exponential model types or to any other types of loss functions such as 0-1
loss. However, we note that eq. (25) is specific to exponential models under a log loss function,
so this is unclear. On the other hand, there are likely many other types of exponential language
models, as well as exponential models outside of language modeling, where eq. (7) holds. For all
of these models, eq. (7) gives us a way of explaining their test performance in terms of training
performance and model size, and we can use techniques like Heuristics 1 and 2 to improve them.
All in all, eq. (7) provides a valuable and important new framework for characterizing, analyzing,
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and designing statistical models.
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