
Pruning Exponential Language Models
Stanley F. Chen, Abhinav Sethy, Bhuvana Ramabhadran

IBM T.J. Watson Research Center
P.O. Box 218, Yorktown Heights, NY 10598 USA
{stanchen,asethy,bhuvana}@us.ibm.com

Abstract—Language model pruning is an essential technology
for speech applications running on resource-constrained devices,
and many pruning algorithms have been developed for conven-
tional word n-gram models. However, while exponential language
models can give superior performance, there has been little work
on the pruning of these models. In this paper, we propose several
pruning algorithms for general exponential language models. We
show that our best algorithm applied to an exponential n-gram
model outperforms existing n-gram model pruning algorithms
by up to 0.4% absolute in speech recognition word-error rate on
Wall Street Journal and Broadcast News data sets. In addition, we
show that Model M, an exponential class-based language model,
retains its performance improvement over conventional word n-
gram models when pruned to equal size, with gains of up to
2.5% absolute in word-error rate.

I. INTRODUCTION

Due to the availability of increasingly large text corpora and
the limited amount of memory in computing devices, language
model pruning has become an indispensable technology. While
pruning for conventional word n-gram models has received a
great deal of attention, there has been little work on pruning for
exponential (or maximum entropy) language models. However,
recent work has shown that exponential language models such
as Model M can achieve superior performance [1].

In this paper, we show how many existing n-gram model
pruning algorithms can be viewed as attempting to optimize
estimated test set perplexity, and discuss how ideas from these
techniques can be adapted to exponential models. We present
several methods for estimating the change in test set perplexity
resulting from the removal of an n-gram, and evaluate the
associated pruning algorithms in word-error rate for both expo-
nential n-gram models and Model M. For exponential n-gram
models, we find that our methods compare favorably to state-
of-the-art pruning methods for conventional n-gram models. In
addition, we find that Model M retains its performance gains
relative to word n-gram models when pruned to equal size,
with gains increasing with heavier pruning.

In the remainder of this section, we provide an introduction
to exponential n-gram models and Model M. In Section II,
we discuss key pruning algorithms from the literature and
show how to adapt these to exponential models. In Section III,
we present experiments and follow with related work in
Section IV and conclusions in Section V.

An exponential model pΛ(y|x) contains a set of features
{fi(x, y)} and equal number of parameters Λ = {λi} where

pΛ(y|x) =
exp(

∑
i λifi(x, y))
ZΛ(x)

(1)

and where the ZΛ(x) =
∑

y′ exp(
∑

i λifi(x, y′)) are normal-
ization terms. In an exponential language model, we take y to
be the current word and x to be a number of preceding words.
A word n-gram model can be expressed as an exponential
model in the following manner: Let fθ(·) denote a binary n-
gram feature such that fθ(x, y) = 1 iff xy “ends” in the n-
gram θ. Then, an exponential n-gram model has a feature fθ(·)
for each m-gram occurring in the training data for m ≤ n.
Such models describe the same space of conditional models as
conventional n-gram models do, and can be thought of as an
alternate parameterization of the same model space [2]. One
advantage of this representation is that smoothing can be done
simply and effectively via `1 +`22 regularization [3], [1] where
the parameters Λ are chosen to optimize

O`1+`22
(Λ) = log PPtrn +

α

D

∑
i

|λi|+
1

2σ2D

∑
i

λ2
i (2)

where PPtrn is training set perplexity, D is the number of
words in the training set, and α and σ are regularization
hyperparameters. Unpruned n-gram models regularized this
way have about the same performance as conventional n-gram
models smoothed with modified Kneser-Ney smoothing [4].

Model M is a class-based n-gram model composed of two
separate exponential models, one for predicting classes and
one for predicting words. Let png(y|θ) denote an exponential
n-gram model and let png(y|θ1, θ2) denote a model containing
all features in png(y|θ1) and png(y|θ2). If we assume that every
word w is mapped to a single word class, the trigram version
of Model M is defined as

pM (wj |wj−2wj−1) ≡png(cj |cj−2cj−1, wj−2wj−1)×
png(wj |wj−2wj−1cj) (3)

where cj is the word class of word wj . Model M has achieved
among the largest word-error rate improvements over word n-
gram models ever reported, with gains as high as 3% absolute
as compared to a Katz-smoothed trigram model [5].

II. PRUNING FOR EXPONENTIAL LANGUAGE MODELS

In this section, we present a general framework for an-
alyzing pruning algorithms. A natural goal in designing a
pruning algorithm is to maximize test set performance given
a fixed language model size. For computational reasons, we
attempt to optimize the perplexity of test data rather than an
application-specific measure such as word-error rate. These
two quantities are well-correlated when considering models
of a single type, e.g., [4]. However, since test data is by its



nature “unseen”, we cannot directly measure test set perplexity
and must instead estimate it. Note that if we have the counts
of the n-grams in a test set, it is straightforward to compute its
perplexity. Furthermore, note that the probabilities given by a
smoothed language model can be interpreted as estimates of
n-gram frequencies in unseen data, and thus we can use the
corresponding counts to compute test set perplexities.

While generally not framed in this way, many conventional
n-gram pruning algorithms can also be viewed as attempting
to optimize test set perplexity. In particular, several algorithms
attempt to minimize the Kullback-Leibler distance between the
original model and the pruned model [6], [7]:

D(porig ‖ pprune) =
∑
x,y

p(x)porig(y|x) log
porig(y|x)
pprune(y|x)

(4)

Test set log perplexity is equivalent to the cross-entropy
between the empirical test set distribution ptst and the final
model pprune, which differs from D(ptst ‖ pprune) by a constant.
As mentioned earlier, porig can be viewed as an estimate of
ptst, so minimizing D(porig ‖ pprune) is essentially equivalent
to minimizing test set perplexity.

In the following sections, we discuss how various exist-
ing conventional n-gram pruning algorithms correspond to
successively better approximations to eq. (4), and use the
isomorphism between conventional and exponential n-gram
models to show how these ideas can be applied to exponential
language models as well.

A. Weighted difference pruning

One of the earliest and simplest algorithms for pruning
conventional n-gram models is weighted difference pruning
[8]. As noted in [9], smoothed conventional n-gram models
can generally be expressed as

ps(wj |wj−1
j−n+1) =


q(wj |wj−1

j−n+1) if ctrn(w
j
j−n+1) > 0

α(wj−1
j−n+1)×

ps(wj |wj−1
j−n+2) otherwise (5)

where wk
j ≡ wjwj+1 · · ·wk and where lower-order distribu-

tions of ps(·) are defined analogously. The values q(·|·) can
be viewed as the parameters of the model, similar to the
λ′is in an exponential model. The back-off factors α(·) force
each distribution to sum to 1, and play the same role as the
normalization constants ZΛ(x) in exponential models.

Weighted difference pruning makes the approximation that
when pruning an n-gram θ, the q(·) parameter associated with
θ is deleted and all other q(·) and α(·) are left unchanged. For
simplicity, we describe this algorithm for the case of bigram
models. Substituting eq. (5) into eq. (4) and simplifying, the
impact of removing a single n-gram wj−1wj is

D(porig ‖ pprune) ≈ p(wj−1)porig(wj |wj−1) log
ps(wj |wj−1)

α(wj−1)ps(wj)

Approximating p(wj−1)porig(wj |wj−1) scaled by D with the
Good-Turing discounted count cdisc(wj−1wj), we get

scoreWD(wj−1wj) = cdisc(wj−1wj) log
ps(wj |wj−1)

α(wj−1)ps(wj)
(6)

This score is computed for each n-gram relative to the full
model, and n-grams with scores below a threshold are pruned.

To see how we can construct an analogous pruning algo-
rithm for exponential language models, let us map the con-
ventional n-gram parameters to exponential model parameter
space and find the analog to eq. (6). Using the equivalence
relations from [2], we have

ps(wj |wj−1) =
exp(λwj

+ λwj−1wj
)

ZΛ(wj−1)
(7)

α(wj−1)ps(wj) =
exp(λwj )
ZΛ(wj−1)

(8)

Substituting into eq. (6), we get

scoresimple(wj−1wj) = cdisc(wj−1wj)λwj−1wj (9)

By generalizing this equation to apply to arbitrary features
rather than just n-grams, this gives us a pruning algorithm
(simple) that can be applied to arbitrary exponential language
models. Thus, we have shown how an existing algorithm for
conventional n-gram models can be adapted to exponential
language models, and we repeat this exercise for more com-
plex algorithms below.

B. Relative entropy pruning

Relative entropy pruning [7] is the most popular pruning
algorithm in practice, and improves upon weighted difference
pruning by also accounting for the effect on the back-off factor
α(wj−1) when pruning the bigram wj−1wj . Specifically,
α(wj−1) is adjusted so that the model is again normalized.
Then, D(porig ‖ pprune) can be computed exactly and efficiently
when pruning a single n-gram from the original model.

A natural way to extend these ideas to exponential models
is to account for the change in the normalization constants
ZΛ(x) when pruning a feature. Our first method is motivated
by the empirical relationship from [1] relating training and test
set performance for exponential language models:

log PPtst ≈ log PPtrn +
γ

D

∑
i

|λi| (10)

where γ = 0.938 works well when regularizing with (α =
0.5, σ2 = 6). Note that eq. (2) is a generalization of eq. (10), so
the former equation can also be used as a proxy for estimated
test set performance.

Let us compute the change in log PPtrn resulting from re-
moving a single n-gram θ. Plugging eq. (1) into the definition
of perplexity, for binary features we have that

log PPtrn =
1
D

(
−
∑

θ

ctrn(θ)λθ +
∑

x

ctrn(x) log ZΛ(x)

)

D log
PPnew

trn

PPold
trn

= ctrn(θ)λθ +
∑

x:fθ active

ctrn(x) log
Znew

Λ (x)
Zold

Λ (x)

Let s(x, y) ≡ exp(
∑

i λifi(x, y)) and let yθ be the last word
in θ. Then, the last term in the previous equation can be



approximated as∑
x:fθ active

ctrn(x)
snew(x, yθ)− sold(x, yθ)

Zold
Λ (x)

(11)

= D · EpΛ [fθ] · (e−λθ − 1) (12)

When using `1 + `22 regularization, EpΛ [fθ] can be computed
simply using the relationship

EpΛ [fθ] =
1
D

(
ctrn(θ)− α sgn(λθ)−

λθ

σ2

)
(13)

Putting everything together, we get

scoretrain(θ) = ctrn(θ)λθ + D · EpΛ [fθ] · (e−λθ − 1)−

α|λθ| −
λ2

θ

2σ2
(14)

Our second method for approximating the effect of renor-
malization, norm pruning, is inspired by ideas from [10]. We
make the assumption that pΛ(yθ|x) is constant across all x for
which a feature θ is active. Then, we have

EpΛ [fθ] =
1
D

pΛ(yθ|x)
∑

x:fθ active

ctrn(x) ≡ 1
D

pΛ(yθ|x)chist(fθ)

where chist(fθ) denotes the number of training event histories
where fθ is active. Using eq. (13), we get

pavg(fθ) ≡ pΛ(yθ|x) =
ctrn(θ)− α sgn(λθ)− λθ

σ2

chist(fθ)
(15)

for x where fθ is active.
Then, using eq. (1), we can compute how pΛ(yθ|x) changes

for these events if the feature fθ is pruned:

pprune(fθ) =
pavg(fθ)e−λθ

1 + pavg(fθ)(e−λθ − 1)
(16)

The denominator reflects the change in the normalization
constant. Thus, for each event (x, yθ) where fθ is active, the
loss in log likelihood for the pruned model is − log pprune(fθ)

pavg(fθ) .
For each event (x, y) where fθ is active and y 6= yθ, there is
a gain in log likelihood of

log(1 + pavg(fθ)(e−λθ − 1)) = log
1− pprune(fθ)
1− pavg(fθ)

(17)

due to the adjusted normalization constant. Then, we need only
estimate the counts of these two types of events. The number
of events of the first type is ctst(θ), and a natural estimate is
the marginal count D · EpΛ [fθ] of that feature (which can
be computed efficiently using eq. (13)). For events of the
second type, we use the estimate chist(fθ) − ctst(θ). Putting
it all together and scaling by D, we get

scorenorm(θ) = chist(fθ)[pavg(fθ) log
pavg(fθ)
pprune(fθ)

+

(1− pavg(fθ)) log
1− pavg(fθ)
1− pprune(fθ)

] (18)

This is essentially identical to the gain of adding a binary
feature to a joint exponential model reported in [10].

TABLE I
EXPONENTIAL LANGUAGE MODEL PRUNING ALGORITHMS.

name score(θ)
count cutoffs ctrn(θ)
λ cutoffs |λθ|
simple eq. (9) with cdisc(θ) = D · EpΛ [fθ].
train eq. (14) with α = 0.5, σ2 = 6.
perfpred eq. (14) with α = 0.938, σ2 = ∞.
norm eq. (18)
iter.grow.rand Iterative random growing and norm pruning.

C. Revised Kneser pruning

Revised Kneser pruning [11] is specific to n-gram models
smoothed with Kneser-Ney smoothing and variants [9], and
improves upon relative entropy pruning in several ways. One
of the characteristics of Kneser-Ney smoothing is that marginal
constraints of the following form are (approximately) satisfied:∑

wj−1

ptrn(wj−1)ps(wj |wj−1) ≈ ptrn(wj) (19)

To maintain this constraint when pruning a bigram wj−1wj ,
its “count” should be given to the unigram wj . That is, q(wj)
should generally be boosted when we prune wj−1wj , and it
is shown that eq. (4) can still be computed efficiently when
reestimating back-off n-gram probabilities so as to maintain
marginal constraints. For exponential models, the analogous
parameter retraining (e.g., via iterative scaling) is expensive
in the general case, and cannot be repeated for each feature.
Instead, we retrain parameters only once after pruning is
complete; this can be interpreted as resmoothing the model
using eq. (2) given the final feature set.

Another improvement of revised Kneser pruning is the use
of sequential pruning. Rather than computing the score of
all n-grams relative to the full model, after each n-gram is
pruned the model is updated, and the adjusted model is used
to compute the scores of succeeding n-grams. While it is
impractical to update an exponential model after each feature
is pruned, we can do so after each batch of features; we refer
to this as iterative pruning.

Finally, [11] proposes a method for growing n-gram models
that can be applied before pruning. Ideally, one would like to
add a feature to a model based on its estimated gain, but this
gain is expensive to compute for general exponential models.
Instead, we take a randomized approach: for any existing
feature in the model, we consider any extension or truncation
by one token that occurs in the training set, and add that
feature with probability pkeep. In the algorithm iter.norm.rand,
we alternate randomized growing and norm pruning stages
(and parameter retraining).

III. EXPERIMENTS

We present results on two different corpora: Wall Street
Journal and Broadcast News. For the Wall Street Journal runs,
we use the same data sets and methodology as in [1]. We use
a training set of 23M words and a vocabulary of 21k words.
The development and evaluation sets are 18k and 47k words,
respectively. The acoustic model is a cross-word quinphone
system built from 50h of Broadcast News data and contains



 20

 22

 24

 26

 28

 30

 32

 34

 36

 4.5  5  5.5  6  6.5

W
E

R

log PP (nats)

conventional n-gram, mKN
exponential n-gram

model M
conventional n-gram, Katz

Fig. 1. Comparison between test set perplexity and word-error rate for pruned
models on Wall Street Journal data.

 22

 23

 24

 25

 26

 27

 28

10M 1M 100k

W
E

R

parameters

exp n-gram + λ cutoffs
mKN n-gram + relative entropy

mKN n-gram + count cutoffs
Katz n-gram + count cutoffs
exp n-gram + count cutoffs

Katz n-gram + relative entropy
exp n-gram + norm

Fig. 2. Test set word-error rates for various pruning algorithms for
conventional and exponential 4-gram models, 23MW WSJ training set.

2176 context-dependent states and 50k Gaussians. We use
lattice rescoring to evaluate each language model, and choose
the acoustic weight for each model to optimize the word-error
rate of that model on the development set.

The speech recognition setup for the Broadcast News exper-
iments is based on the 2007 IBM GALE speech transcription
system. The acoustic model was discriminatively trained on
430h of Broadcast News audio and contains 6000 context-
dependent states and 250k Gaussians. The language model
training text is 130MW of 1996 CSR Hub4 language model
data, and a vocabulary of 84k words is used. The evaluation
set is the 2.5h RT04 evaluation set containing 45k words.

In all experiments, the 4-gram versions of models are used.
For count cutoffs, we use the same cutoff values across all
n-gram levels. Unless otherwise noted, all of the evaluated
pruning algorithms have the following form: we assign a
score to each feature, and prune all features whose score
falls below a given threshold. All exponential models are
trained with `1 + `22 regularization with (α = 0.5, σ2 = 6)
as recommended in [1], and models are retrained in the same
way after pruning. The exponential language model pruning
algorithms we evaluate are summarized in Table I.

We take the size of a model to be the number of nonzero

parameters. However, we do not count normalization pa-
rameters ZΛ(·) nor the analogous back-off parameters α(·)
since normalization constants may be computed on the fly for
exponential models. We do not count word unigram features
(nor try to prune them) since these are mandatory in ARPA n-
gram model format. For Model M, we do count one parameter
for each word specifying the class membership of that word.

We first evaluate our algorithms on the Wall Street Journal
data before presenting results with the larger Broadcast News
training set. While most previous work has focused on perplex-
ity, we will present word-error rate results almost exclusively.
In Figure 1, we plot log perplexity versus word-error rate for
many of the pruned Wall Street Journal language models that
we evaluated. Some types of models systematically achieve
better word-error rates for the same perplexity than others.
Most notably, Katz-smoothed n-gram models appear to outper-
form modified-Kneser-Ney-smoothed n-gram models by about
1% absolute at the same perplexity value. Thus, perplexity
results can be misleading when comparing pruning algorithms.
Also, we report performance differences as absolute word-
error rates rather than relative differences, as these tend to
vary less across different baseline word-error rates [1].

In Figure 2, we compare the performance of existing
pruning algorithms for conventional and exponential n-gram
models against norm pruning, our primary baseline among
the algorithms we propose. (In most graphs, the key will
list algorithms in the same order as their performance.) For
each algorithm, we evaluate a variety of pruning thresholds to
produce a curve of word-error rate versus model size, with the
points to the far left corresponding to unpruned models.

Among the pruning algorithms for conventional n-gram
models, we find that both relative entropy pruning and count
cutoffs perform badly with Kneser-Ney-smoothed models,
as consistent with previous findings in the literature [11].
In contrast, Katz smoothing, despite its relatively poor un-
pruned behavior, does better, with relative entropy pruning
outperforming count cutoffs. Indeed, relative entropy pruning
with Katz-smoothed models represents the start of the art
for conventional n-gram pruning in terms of word-error rate,
except when using little or no pruning. (We do not evaluate
revised Kneser pruning here, as no word-error rate gains have
been found as compared to the preceding algorithm [11].)
However, exponential n-gram models with norm pruning do
even better across a wide range of pruning thresholds. Count
cutoffs are somewhat worse while λ cutoffs perform very
poorly with exponential language models.

For algorithms that are close in word-error rate, performance
differences are clearer when plotting performance relative
to some baseline algorithm. We do this for a number of
algorithms relative to norm pruning in Figure 3, where the
line y = 0 corresponds to the performance of norm pruning.
Linear interpolation is used to estimate error rates for model
sizes that we do not have direct measurements for. In this
graph, we can see that norm pruning outperforms relative
entropy pruning with Katz smoothing by 0.1–0.4% absolute
with modest to heavy pruning. Among the other pruning



-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

10M 1M 100k

de
lta

 W
E

R

parameters

Katz n-gram + relative entropy
exp n-gram + simple

exp n-gram + norm.notrain
exp n-gram + train

exp n-gram + perfpred
mKN + retrain + fix2

Katz + retrain
exp n-gram + iter.grow.rand

Fig. 3. Relative test set performance between various pruning algorithms
and norm pruning, 23MW Wall Street Journal training set.

 22

 23

 24

 25

 26

 27

 28

10M 1M 100k

W
E

R

parameters

mKN + relative entropy
mKN + retrain

mKN + retrain + fix2
Katz + relative entropy

exp n-gram + norm
Katz + retrain

Fig. 4. Test set word-error rates for retrained relative-entropy-pruned
conventional 4-gram models and baseline algorithms, 23MW WSJ training.

algorithms for exponential models, simple pruning is the worst
of these as befits its name. The algorithms train and perfpred
are very close to norm, within 0.1% absolute for most pruning
thresholds, though they may be slightly worse with very high
pruning. The algorithm norm.notrain is like norm pruning
except we do not retrain parameters after pruning. We see
that retraining can make a significant difference with heavier
pruning. The algorithm iter.grow.rand (with 20 iterations and
pkeep = 0.1) achieves modest performance gains of up to 0.2%
absolute over norm pruning.

Note that the performance of a pruned model depends on
two separate factors: which features are pruned, and how
the resulting model is smoothed. Particularly, exponential
models smoothed with `1 + `22 regularization tend to outper-
form smoothed conventional n-gram models, so performance
gains from pruned exponential models may be due to better
smoothing rather than better feature selection. To separate the
impact of these two factors, we convert pruned conventional
n-gram models into the equivalent exponential n-gram models
and then retrain their parameters using `1 + `22 regularization.
In this way, we can directly compare the quality of feature
selection since the smoothing is identical. In Figures 3 and 4,
we display the performance of relative entropy pruning with

 20

 21

 22

 23

 24

 25

 26

 27

 28

10M 1M 100k

W
E

R

parameters

Katz n-gram + relative entropy
exp n-gram + norm

model M + norm
model M + iter.grow.rand

Fig. 5. Test set word-error rates for various pruning algorithms for Model
M and word 4-gram model baselines, 23MW Wall Street Journal training set.

conventional n-gram models when followed by parameter
retraining. Parameter retraining corrects one of the two flaws
identified in [11] associated with applying relative entropy
pruning to Kneser-Ney-smoothed models. The other flaw can
be corrected by taking p(x) in eq. (4) to be equal to its training
set frequency; this is denoted as fix2 in the graph labels. We
see that both retraining and applying fix2 improve relative
entropy pruning with Kneser-Ney smoothing a great deal.
However, parameter retraining with Katz smoothing yields
even better performance, with parameter retraining improving
performance by about 0.4–0.5% absolute and overall perfor-
mance surpassing norm pruning by up to 0.3% absolute. These
results suggest that the main contributor to better performance
for pruned exponential n-gram models is superior smoothing
rather than better feature selection.

As discussed in Section I, the class prediction model in
Model M contains features from two different exponential n-
gram models, and thus conventional n-gram model pruning
algorithms cannot be applied. For the Wall Street Journal
experiments, we use the enhanced word classing algorithm
for Model M developed in [5]. For the Broadcast News ex-
periments, we use bigram mutual information word clustering
[12] to build word classes.

In Figure 5, we compare algorithms for pruning Model M
against our main baselines for word n-gram model pruning.
Despite its larger unpruned size, Model M consistently yields
sizable gains versus word n-gram models, with gains of about
1.5% absolute with light pruning and gains of above 2.5%
absolute at the right edge of the graph, with iter.grow.rand
pruning doing slightly better than norm pruning.

Finally, in Figure 6, we display the performance of various
pruning algorithms for word n-gram models and Model M
using the 130MW Broadcast News training set. We see qualita-
tively similar results as before with this larger data set. Again,
with modest to heavy pruning, Katz smoothing outperforms
modified Kneser-Ney smoothing when using relative entropy
pruning. The norm algorithm outperforms Katz smoothing
with relative entropy pruning by about 0.3% absolute or more
across a wide range of pruning thresholds, with Katz smooth-



 13.5

 14

 14.5

 15

 15.5

 16

 16.5

 17

 17.5

100M 10M 1M

W
E

R

parameters

mKN n-gram + relative entropy
Katz n-gram + relative entropy

Katz + retrain
exp n-gram + norm

exp n-gram + iter.grow.rand
model M + iter.grow.rand

model M + norm

Fig. 6. Test set word-error rates for various pruning algorithms for
conventional and exponential 4-gram models and 4-gram Model M, 130MW
Broadcast News training set.

ing with retraining and iter.norm.rand pruning performing
about the same. While gains for Model M are not as large
as with the smaller training set, we still see consistent gains
of 1% absolute as compared to Katz smoothing with relative
entropy pruning, with gains of up to 1.5% absolute with
heavier pruning.

IV. RELATED WORK

Here, we discuss previous work on pruning for exponential
language models. The use of count cutoffs is a common
technique, e.g., [13], [14]. Count cutoffs are compared with
smoothing techniques for exponential n-gram models in [2].

The use of `1 or `1 + `22 regularization [3], [15] has been
noted to produce sparse solutions; i.e., many λi are set to 0
and can be trivially pruned. For example, 8% of the λi’s in
our unpruned Wall Street Journal exponential 4-gram model
are zero due to regularization. While such techniques can be
effective for light pruning, α needs to be increased for heavier
pruning, likely leading to poor test set performance.

A related technique to model pruning is model growing,
or feature induction. In [16], several criteria for inducing
features in a maximum entropy language model are compared,
including the feature gain computation described in [10], count
cutoffs, and a criterion based on mutual information [14].
They found modest gains in perplexity with the first method
as compared to the latter, but speech recognition experiments
revealed basically no gain in word-error rate as compared to
a baseline trigram model [17].

V. DISCUSSION

There has been relatively little work on the pruning of
general exponential language models, and this paper provides
the first systematic comparison of many methods for pruning
such models. We propose several novel pruning algorithms and
show that these outperform simpler methods such as count
cutoffs and λ cutoffs by a large margin. The method norm
is efficient, easy to implement, and achieves excellent word-
error rates. The method iter.grow.rand, while complex, can
sometimes give slightly better performance.

On the other hand, there has been a great deal of work
on pruning conventional n-gram models. The majority of
results in the pruning literature have dealt with perplexity, but
we show that this is a poor predictor of speech recognition
performance due to systematic differences in word-error rates
for different methods. While relative entropy pruning with
Katz-smoothed models have been surpassed in perplexity [11],
this algorithm has not been bettered in the literature in word-
error rate, and thus can be viewed as the state of the art
for conventional n-gram pruning. Here, we show that we
can improve upon this baseline by resmoothing with `1 + `22
regularization or by using norm pruning with exponential n-
gram models, with word-error rate gains of up to 0.4–0.5%
absolute. We show that these gains are due primarily to better
smoothing rather than better feature selection.

Finally, we apply our novel pruning algorithms to Model M
and show that it retains its word-error rate gain over word n-
gram models when pruned to the same number of parameters.
We find that compared to a (pruned) Katz-smoothed 4-gram
model, gains can be up to 2.5% absolute with heavy pruning,
larger than previous gains reported in the literature for equal-
size class-based models, e.g., [18].

REFERENCES

[1] S. F. Chen, “Performance prediction for exponential language models,”
IBM Research Division, Tech. Rep. RC 24671, October 2008.

[2] S. F. Chen and R. Rosenfeld, “A survey of smoothing techniques
for maximum entropy models,” IEEE Trans. on Speech and Audio
Processing, vol. 8, no. 1, pp. 37–50, 2000.

[3] J. Kazama and J. Tsujii, “Evaluation and extension of maximum entropy
models with inequality constraints,” in Proc. EMNLP, 2003.

[4] S. F. Chen and J. Goodman, “An empirical study of smoothing tech-
niques for language modeling,” Harvard U., Tech. Rep. TR-10-98, 1998.

[5] S. F. Chen and S. M. Chu, “Enhanced word classing for model M,” in
Proc. Interspeech, 2010.

[6] R. Kneser, “Statistical language modeling using a variable context
length,” in Proc. ICSLP, vol. 1, October 1996, pp. 494–497.

[7] A. Stolcke, “Entropy-based pruning of backoff language models,” in
Proc. DARPA Broadcast News Transcription and Understanding Work-
shop, Lansdowne, VA, February 1998, pp. 270–274.

[8] K. Seymore and R. Rosenfeld, “Scalable backoff language models,” in
Proc. ICSLP, vol. 1, October 1996, pp. 232–235.

[9] R. Kneser and H. Ney, “Improved backing-off for m-gram language
modeling,” in Proc. ICASSP, vol. I, May 1995, pp. 181–184.

[10] S. Della Pietra, V. Della Pietra, and J. Lafferty, “Inducing features
of random fields,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 19, no. 4, pp. 380–393, April 1997.

[11] V. Siivola, T. Hirsimki, and S. Virpioja, “On growing and pruning
Kneser-Ney smoothed n-gram models,” IEEE Trans. on Audio, Speech,
and Language Processing, vol. 15, no. 5, pp. 1617–1624, July 2007.

[12] P. F. Brown, V. J. Della Pietra, P. V. deSouza, J. C. Lai, and R. L. Mer-
cer, “Class-based n-gram models of natural language,” Computational
Linguistics, vol. 18, no. 4, pp. 467–479, December 1992.

[13] R. Lau, “Adaptive statistical language modelling,” Master’s thesis,
Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, MA, 1994.

[14] R. Rosenfeld, “A maximum entropy approach to adaptive statistical
language modeling,” Comp. Speech and Lang., vol. 10, 1996.

[15] J. Goodman, “Exponential priors for maximum entropy models,” in
Proc. NAACL, 2004.

[16] A. Berger and H. Printz, “A comparison of criteria for maximum
entropy/minimum divergence feature selection,” in Proc. EMNLP, 1998.

[17] ——, “Recognition performance of a large-scale dependency grammar
language model,” in Proc. ICSLP, 1998.

[18] H. Yamamoto, S. Isogai, and Y. Sagisaka, “Multi-class composite n-gram
language model,” Speech Comm., vol. 41, no. 2-3, 2003.


