
Compiling Large-Context Phonetic Decision Trees into Finite-State
Transducers

Stanley F. Chen

IBM T.J. Watson Research Center
P.O. Box 218, Yorktown Heights, NY 10598

stanchen@us.ibm.com

Abstract

Recent work has shown that the use of finite-state transduc-
ers (FST’s) has many advantages in large vocabulary speech
recognition. Most past work has focused on the use of triphone
phonetic decision trees. However, numerous applications use
decision trees that condition on wider contexts; for example,
many systems at IBM use 11-phone phonetic decision trees.
Alas, large-context phonetic decision trees cannot be compiled
straightforwardly into FST’s due to memory constraints. In this
work, we discuss memory-efficient techniques for manipulat-
ing large-context phonetic decision trees in the FST framework.
First, we describe a lazy expansion technique that is applicable
when expanding small word graphs. For general applications,
we discuss how to construct large-context transducers via a se-
quence of simple, efficient finite-state operations; we also intro-
duce a memory-efficient implementation of determinization.

1. Introduction
The use of finite-state transducers (FST’s) in speech recognition
has been shown to yield many benefits. Most notably, the task
of decoding can be framed as a search on a finite-state machine
(FSM) created by the composition of several finite-state trans-
ducers [1]. Specifically, if we take G to be an FSM encoding
a grammar or language model, L to be an FST encoding a pro-
nunciation lexicon, and C to be an FST encoding the expansion
of context-independent phones to context-dependent units, then
the composition G ◦ L ◦ C yields an FST mapping word se-
quences to their corresponding sequences of context-dependent
units. The resulting FSM, after minimization, can be used di-
rectly in a speech recognition decoder; such decoders have been
shown to yield excellent performance [2],

In this paper, we focus on the construction of the trans-
ducer C for large-context phonetic decision trees. That is,
most speech recognition systems use decision trees to map from
context-independent phones to context-dependent units. For ex-
ample, for a triphone decision tree, the context-dependent units
corresponding to a phone are determined by using a decision
tree that can ask questions about three phones of context, i.e.,
the current phone and one phone to the left and right. (We shall
hereafter refer to context-dependent units as leaves, as they cor-
respond to leaves in a decision tree.) Thus, a triphone decision
tree represents a mapping from triphones to leaves, which sug-
gests a straightforward representation as an FST containing p2

states and p3 arcs, where p is the size of the phone vocabulary.
More generally, an n-phone decision tree can be expressed with
an FST containing pn−1 states and pn arcs [1].

While several papers have discussed the construction of C
corresponding to a triphone decision tree, there has been lim-

ited discussion of the use of wider-context decision trees, which
have been shown to yield improved accuracies over triphones.
With a phone set of size 50, a straightforward conversion of a
quinphone decision tree to an FST would contain 505 ≈ 3×108

arcs; at 16 bytes per arc, this translates to about 5GB of mem-
ory, which is more than what today’s prevalent 32-bit comput-
ing systems can handle. However, Mohri et al. [1] note that
it should be possible to shrink such transducers a great deal
through minimization, and consequently, it should be possible
to construct such transducers using current hardware. In this
work, we describe memory-efficient algorithms for computing
C for large-context phonetic decision trees.

First, we discuss a technique that we refer to as virtual
finite-state machines, applicable when composing a phonetic
decision tree with a graph of modest size as in lattice rescor-
ing. Similar in spirit to lazy finite-state operations [3] and to the
decision tree FST outlined by Sproat [4], only the portions of
an FSM that are used are expanded in memory. However, this
method is not helpful in unconstrained decoding, as much of the
transducer will be expanded and little savings will be attained.

For more general applications, we discuss how to compile
phonetic decision trees into fully-realized, minimal finite-state
transducers. We use similar ideas as described by Sproat and Ri-
ley [5] for expressing decision trees as the intersection of many
small transducers. However, unlike in that work, we discuss
techniques for making this process as memory-efficient as pos-
sible. As the memory bottleneck in this process (as in many
FSM expansion tasks) is the determinization operation, we also
describe a memory-efficient implementation of determinization.

2. Virtual finite-state machines
The basic idea behind virtual FSM’s is that there exist some
FSM’s that are extremely large if explicitly expressed using a
generic FSM representation, but which can be expressed com-
pactly using special-purpose code. For example, FST’s encod-
ing phonetic decision trees have a regular structure: an n-phone
decision tree can be expressed with pn−1 states, each state en-
coding the identity of the last n − 1 phones p−m · · · pm−1 ac-
cepted where m = n−1

2
. For a state corresponding to the his-

tory p−m · · · pm−1, the output for the outgoing arc with input
pm is determined by applying the decision tree to the context
p−m · · · pm−1pm. Thus, in theory, we can satisfy the interface
for a large FSM with a decision-tree module that uses very little
memory; however, in practice, some extra glue is required.

Most FSM toolkits express the identity of a state as a 32-bit
integer (e.g., [6]); to integrate virtual FSM’s in existing toolk-
its, we need to also satisfy this requirement. However, phonetic
decision tree FSM’s can contain more than 232 states. To solve

class VirtualFsm {

// map from long state descriptions to short
map<vector<int>, int> l2s;

// map from short state descriptions to long
vector<vector<int> > s2l;

public:
init() { add start state to l2s, s2l; }

// given short state s, return outgoing arcs
get out arcs(int s) {

l = s2l[s];
compute outgoing arcs of l;
add newly-reached states to l2s, s2l;
map arc dst. states to short descriptions via l2s;
return arcs;
}

};

Figure 1: Pseudocode for virtual FSM class.

(a)
· · · k k- - -

p
· · ·

(b)

· · · k k k k k- - - - - -
p1.0 p2.0 p3.0 p

· · ·

(c)

· · · k k k k k- - - - - -
p1.n1 p2.n2 p3.n3 p

· · ·

(d)

· · · k k k k k- - - - - -
l1 l2 l3 p

· · ·

(e)

· · · k k k k- - - - -
p:l1 ε:l2 ε:l3

· · ·

Figure 2: Outline of decision tree expansion.

this dilemma, we note that in most applications, fewer than 232

states in the FSM will be accessed, and we need only number
the states that are actually used. We can dynamically construct a
table that maps from the full description of a state (e.g., a vector
of integers encoding the last n − 1 phones) to unique 32-bit in-
tegers. We present C++-like pseudocode for a virtual FSM class
in Figure 1. The short description of a state is its 32-bit integer
identity; the long description is its full vector representation.

Note that for each state accessed in the virtual FSM, con-
comitant space in the l2s and s2l structures must be allo-
cated. As a result, this technique is only applicable when ap-
plying the FSM to a graph of modest size, such as in lattice
rescoring. For unconstrained word or phone decoding, a large
portion of the virtual FSM will be expanded, thus making the
memory requirements of this technique excessively high.

3. Decomposing tree expansion
In this section, we describe how to convert a phonetic decision
tree to a minimal FST via a sequence of simple finite-state op-
erations. We begin by giving an overview of how the process
will work. We start with a phone loop, an acceptor with a single
state containing a self-loop arc labeled with p for every phone
p, i.e., an FSM that accepts any phone sequence. We depict a
single arc of this machine in Figure 2(a).

Then, we expand this graph as in Figure 2(b): Before each
phone, we insert a marker for each leaf that the phone will ex-
pand to; in most speech recognition systems, phones expand to

G = graph to be expanded (e.g., a phone loop)
while (G not completely expanded) do

for each question qi

apply qi to G for phones to left;
determinize and minimize G;

reverse G and determinize and minimize;
for each question qi

apply qi to G for phones to right;
determinize and minimize G;

reverse G and determinize and minimize;

Figure 3: Pseudocode for question-by-question expansion.

class Determinize: public VirtualFsm {

// how many states done expanding
int done;

public:
init() { done = 0; }

determinize() {
while done < s2l.size() {

A = get out arcs(done);
write out arcs A of current state;
done += 1; }

}
};

Figure 4: Pseudocode for determinization.

a sequence of three leaves. For each leaf position pi that the
phone p expands to, we track our current position in the corre-
sponding decision tree. Initially, we begin at node 0, represent-
ing the root node of the associated tree.

Next, we apply a sequence of FST’s that expand the current
graph one question at a time. Each such FST updates only the
leaf markers containing decision tree nodes that ask that ques-
tion and leaves all other arcs unchanged. The FST rewrites the
arc label of each affected arc so that it points to the appropri-
ate child of the original node. By repeatedly applying FST’s
for each question, we will update the source FSM from the root
nodes of trees (Figure 2(b)) to internal nodes ni (Figure 2(c))
and eventually to leaves li (Figure 2(d)). (We defer the expla-
nation of how to build these question FST’s until Section 3.2.)

Finally, we can convert the acceptor in Figure 2(d) to the
transducer in Figure 2(e). Unlike the previous steps, we can-
not express this as a composition operation, but it still straight-
forward to do. We delay the conversion from an acceptor to a
transducer to the final step because operations on acceptors tend
to be more efficient. It is clear that this process will accomplish
the desired compilation of a decision-tree to an FST; we now
discuss how to execute this procedure efficiently.

3.1. Efficient question expansion

We strive to use as little memory as possible over what is re-
quired to store the final FSM, as this is the limiting factor de-
termining which trees we can successfully compile. One natu-
ral strategy is to perform determinization and minimization af-
ter applying each question FST; then, we need only try to limit
the amount of expansion produced when composing with each
question FST. (Indeed, the reason we decompose expansion into
individual question expansions is to make each composition re-
quire as little memory as possible.)

For memory efficiency, operations with nondeterminized

context states arcs time (sec.)
triphone 1971 8334 ∼30

quinphone 26974 181514 ∼300
7-phone 266930 1892140 ∼13000
11-phone n/a n/a n/a

Table 1: Expansion of 1000-leaf phonetic decision trees to
FSM’s for different context sizes.

automata are the enemy, because such operations expand many
paths which will ultimately be pruned. Unfortunately, decision
tree expansion is naturally nondeterministic because the expan-
sion of a phone depends on phones both to the left and right. We
address this issue by applying each question in two steps. We
first apply a question only to those nodes which ask that ques-
tion of a phone to the left; the FST implementing this expansion
will be deterministic. Then, we reverse the current graph (and
determinize and minimize), and then apply the FST expanding
the question for all phones to the right; this FST will also be de-
terministic as we are applying it on the reversed graph. Finally,
we reverse the current graph again (and minimize).

Note that we need not reverse the graph for every question;
we can apply every question in the forward direction, then re-
verse the graph, and then apply every question in the reverse
direction. We summarize the complete expansion algorithm in
Figure 3. In the worst case, we need to execute the outer loop
as many times as the maximum depth of the decision tree. With
a maximum tree depth of 10 and a question set of size 100, this
translates to about 10 × 100 × 2 = 2000 compositions, de-
terminizations, and minimizations. However, in practice, there
will be many times when a question qi is not applicable to any
node in G and thus can be skipped. In addition, as G is deter-
minized after every operation and the question FST’s are also
deterministic, the result of this composition is usually determin-
istic as well and thus determinization can often be skipped.

3.2. Constructing question expansion transducers

Consider constructing the FST for expanding a question qi in
the forward direction (i.e., asking about phones to the left) for
an n-phone decision tree with m = n−1

2
, and consider a deci-

sion tree node that asks about the identity of a phone the max-
imum m positions to the left. To perform this expansion cor-
rectly, the FST states must encode the answer to qi for each of
the m phones to the left. (Note that we need not encode phone
identities, just binary question answers.) An FST containing 2m

states is sufficient for this purpose, one state for each possible
set of answers for the last m phones. For each of these states, we
will have outgoing arcs for each phone, mapping that phone to
itself and advancing to the appropriate next state. For all other
tokens, there will be self-loops at each state, either mapping a
node to the appropriate child if the question applies, or map-
ping a token to itself otherwise. Creating FST’s for the reverse
direction is similar, except that we need to remember m + 1
answers rather than m, as we need to also encode the answer
for the current phone (since we place phone identities after the
corresponding leaf markers in the graph).

4. Memory-efficient determinization
In this section, we describe a memory-efficient implementation
of determinization. Here, we discuss only unweighted accep-
tors, but the algorithm can straightforwardly be extended to
weighted transducers as well. Recall that determinization in-

volves finding sets of states in the source machine that can all
be reached with a given prefix string; each state in the resulting
FSM corresponds to one of these state sets. In fact, the descrip-
tion of a virtual FSM given in Figure 1 partially implements
determinization; the long descriptions are the state sets corre-
sponding to each result state. To complete the algorithm, we
add a little code in a derived class, as shown in Figure 4.

Now, consider the determinization operation performed af-
ter each reversal in the algorithm in Figure 3. After reversal,
the graph G will be extremely nondeterministic; e.g., the state
set corresponding to each result state may contain thousands of
states on average, as will be shown later. Thus, the structures
l2s and s2l can grow to be very large in size.

To reduce the size of l2s, instead of remembering entire
state sets (which may be thousands of bytes each), we can just
store a short hash signature for each set. There will then be a
small chance that the algorithm returns an incorrect answer, in
the case that two distinct state sets hash to the same value and
the algorithm merges the two states into one. However, we can
minimize the chance of error by using a sufficiently large hash
signature. For example, with a hash function that is perfectly
uncorrelated across state sets, the chance of a hash conflict using
a 96-bit signature for a computation that results in a machine
with 50M states is less than 50M2/296 < 10−12 . Additionally,
we can run the algorithm multiple times and perform voting to
further reduce the chance of error.

However, we cannot use the same technique to compress
s2l, as we need to know the full state set identity in order to
correctly compute the outgoing arcs of the corresponding result
state. Instead, we note that s2l is accessed in a completely
first-in first-out manner; i.e., writes to s2l occur exactly in or-
der from beginning to end, as are reads. Thus, s2l can be
stored reasonably efficiently on disk. Furthermore, when stor-
ing s2l on disk, it is straightforward to compress this structure
using a program such as gzip; this makes it possible to take ad-
vantage of subsets common to many state sets for compression.
In our actual implementation, we store s2l partially in mem-
ory, writing to disk only when memory is depleted. On disk,
we spread s2l over multiple files, so we can delete portions of
s2l when they are no longer needed.

5. Optimizing composition
When composing two machines S1 and S2, the resulting ma-
chine may have as many as |S1|× |S2| states, one state (s1, s2)
for each s1 ∈ S1 and s2 ∈ S2 [3]. Thus, when we apply a ques-
tion FSM to the graph G (as in Figure 3) for an 11-phone tree,
say, the resulting G may be up to 2(11−1)/2 = 32 times larger,
which may be unacceptable for large G. In this section, we
describe how to make this composition more memory-efficient.

We note that different parts of G may need to be expanded
different amounts. For example, there may be portions of G that
do not include any nodes where the given question is asked, so
these portions need not be expanded at all. In other words, for
states g in these areas, instead of creating states (g, q) for all
states q in the question FSM Q, we need only create the state
(g, q0) for a single q0 ∈ Q. More generally, for each state
g ∈ G, we can compute exactly which phone positions in the
past will be asked about in future tokens; we can do this via dy-
namic programming starting from all arcs that will be rewritten
by the current question. Then, during composition, whenever
we encounter a state (g, q), we find which phone positions the
state g does not care about, and map q to a canonical state q′

(e.g., the lowest-numbered such state) that is equivalent to q

given the positions that are irrelevant. Using this technique, we
find in practice that for most question FSM’s, the graph G is
only expanded by a small fraction after composition.

6. Results
Here, we present results of applying the methods described
earlier to converting wide-context phonetic decision trees into
finite-state transducers. All experiments were conducted using
a phone set containing 53 phones including a word boundary
phone. We used a 1.26GHz Pentium III CPU with 4GB.

For the first set of experiments, we used decision trees con-
taining about 1000 leaves trained from several hundred hours of
telephony data. We trained triphone, quinphone, 7-phone, and
11-phone decision trees. We attempted to convert each of these
trees to its corresponding finite-state acceptor (as shown in Fig-
ure 2(d)) using the algorithm described in Section 3; the results
are given in Table 1. We were unable to complete the 11-phone
run due to resource constraints; however, extrapolating from the
table indicates that the final FSM for this tree may be exceed-
ingly large. We discuss methods for dealing with this issue later
in this section. On the other hand, we were able to construct the
7-phone transducer in a few hours, and as was hoped, the final
minimized FSM is indeed many orders of magnitude smaller
than the naive FSM containing 536 states and 537 arcs.

An example of the efficacy of our memory-efficient de-
terminization implementation can be found during our aborted
11-phone run. One such determinization resulted in an FSM
containing about 1M states, each of which corresponded, on
average, to a set of 6600 states from the original FSM. A
typical determinization implementation would require at least
1M×6600×4 bytes≈26GB of memory; our run used a total of
1.7GB of main memory and 2.7GB of disk space.

In our next set of experiments, we used larger phonetic de-
cision trees trained from ∼200 hours of Switchboard data: a
triphone tree with 3978 leaves and an 11-phone tree with 3416.
More precisely, the triphone tree was actually a quinphone tree
where the second and fourth positions take on binary values
signaling the presence or absence of a word boundary. Ex-
panding a phone loop with the triphone tree resulted in an FSM
with 15319 states and 73881 arcs and took about 500 seconds.
Again, we were unable to expand the 11-phone tree.

However, we note that for many applications, it is not nec-
essary to build the complete FSM corresponding to a phonetic
decision tree because we have some constraints on the type of
graphs that it will be applied to. For example, the most com-
mon applications involve word decoding, where we need only
construct the portions of the FSM that correspond to valid word
sequences. For this scenario, instead of expanding the tree FSM
by starting with a phone loop, we start with a word loop over
some vocabulary and expand this loop to the phone level using a
pronunciation lexicon. We expanded a Switchboard vocabulary
with 40k baseforms with our 11-phone decision tree, yielding
an FSM with 185k states and 303k arcs.

While being able to expand a phone loop with an 11-phone
tree would allow us to do unconstrained phone decoding with
such a model, it is not clear that this is even feasible with cur-
rent hardware as the size of the final FSM may be unmanage-
able. Instead, we consider a constrained phone decoding sce-
nario: we construct a phone graph that generates all phone se-
quences composed entirely of triphone sequences that occur in
a given word vocabulary. Thus, decoding with such a graph
would never consider an unseen triphone sequence, but this
may be adequate for many phone decoding applications. Us-

ing the same Switchboard vocabulary as above, we expanded a
triphone graph with the 11-phone tree, yielding an FSM with
1005k states and 2917k arcs in about 17 hours.

7. Discussion
In this work, we describe efficient algorithms for expanding
wide-context decision trees into finite-state transducers. For ap-
plications that require the online expansion of small graphs as in
lattice rescoring, virtual FSM’s can be effective. For tasks that
require trees to be statically compiled into an FST beforehand,
the methods described in Section 3 are applicable. While we
only discussed phonetic decision trees here, the ideas in Sec-
tion 3 can be extended in a straightforward manner to a large
class of decision trees; the main requirement is that questions
must be expressible via FSM’s.

Though the basic ideas behind converting decision trees to
FST’s have been laid out by Sproat and Riley [5], the algo-
rithms described in that work are not very efficient. They report
compiling a phonetic decision tree with 291 leaves into a set of
transducers (one for each phone) totaling millions of arcs. On
the other hand, we have expanded trees with thousands of leaves
using up to 11-phone context into a single transducer usually
containing hundreds of thousands of arcs or less.

Zweig et al. [7] also discuss methods for expanding graphs
using wide-context decision trees. However, they restrict their
discussion to expanding word graphs and attempt to build
graphs with minimal numbers of arcs rather than states. Us-
ing the method described in Section 6 of expanding a word loop
rather than a phone loop, we can also achieve the cross-word
11-phone expansion of word graphs reported in that work.

Finally, we note that the finite-state transducers correspond-
ing to Figure 2(e) may be very nondeterministic, as the leaf
identities for a phone cannot be determined unambiguously un-
til some number of phones in the future. Consequently, apply-
ing these FST’s to a graph may be inefficient. In practice, one
can determinize the tree FST, or alternatively, one can simply
apply the methods from Section 3 directly to the graph in ques-
tion, rather than expanding a phone loop.

8. References
[1] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state

transducers in speech recognition,” Computer Speech and
Language, vol. 16, pp. 69–88, 2002.

[2] S. Kanthak, H. Ney, M. Riley, and M. Mohri, “A compar-
ison of two LVR search optimization techniques,” in Pro-
ceedings of ICSLP, 2002.

[3] M. Mohri, F. Pereira, and M. Riley, “The design princi-
ples of a weighted finite-state transducer library,” Theoreti-
cal Computer Science, vol. 231, no. 1, pp. 17–32, 2000.

[4] R. Sproat, “Pmtools: A pronunciation modeling toolkit,” in
Proceedings of the 4th ISCA Tutorial and Research Work-
shop on Speech Synthesis, Scotland, 2001.

[5] R. Sproat and M. Riley, “Compilation of weighted finite-
state transducers from decision trees,” in Proceedings of
ACL, Santa Cruz, California, June 1996.

[6] M. Mohri, F. Pereira, and M. Riley, “General-purpose
finite-state machine software tools,” http://www.re-
search.att.com/sw/tools/fsm, 1998.

[7] G. Zweig, G. Saon, and F. Yvon, “Arc minimization in fi-
nite state decoding graphs with cross-word acoustic con-
text,” in Proceedings of ICSLP, 2002.

