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Abstract

In this work, we introduce several models for grapheme-to-
phoneme conversion: a conditional maximum entropy model,
a joint maximum entropy n-gram model, and a joint maximum
entropy n-gram model with syllabification. We examine the
relative merits of conditional and joint models for this task, and
find that joint models have many advantages. We show that the
performance of our best model, the joint n-gram model, com-
pares favorably with the best results for English grapheme-to-
phoneme conversion reported in the literature, sometimes by a
wide margin. In the latter part of this paper, we consider the task
of merging pronunciation lexicons expressed in different phone
sets. We show that models for grapheme-to-phoneme conver-
sion can be adapted effectively to this task.

1. Introduction
Grapheme-to-phoneme conversion is the task of converting a
word from its spelling (e.g., wharf) to its pronunciation or
baseform (e.g., W OW R F); it has application in many areas,
most notably speech synthesis and speech recognition. The
problem can be framed as follows: given a letter sequence L,
find the phone sequence P ∗ that maximizes Pr(P |L):

P
∗ = arg max

P

Pr(P |L) = arg max
P

Pr(L, P ) (1)

Thus, one can choose to estimate the conditional distribu-
tion Pr(P |L) or, alternatively, the joint distribution Pr(L, P ).
While there has been extensive work on grapheme-to-phoneme
conversion within both of these frameworks, it is still unclear
whether one of these approaches is superior to the other.

In this work, we attempt to shed some light on the rela-
tive benefits of each paradigm. First, we introduce several new
models for grapheme-to-phoneme conversion, including a con-
ditional maximum entropy (ME) model; a joint ME n-gram
model; and a joint ME n-gram model that uses syllabification.
We demonstrate that these models achieve state-of-the-art per-
formance over several English data sets, sometimes surpassing
accuracies reported in the literature by a wide margin. We find
that our joint models perform best, and we propose explanations
for why this is the case.

In the second part of this paper, we examine the task of
merging lexicons that are encoded using different phone sets.
We show that performing a context-independent mapping be-
tween phone sets yields a surprisingly high error rate, and that
models for grapheme-to-phoneme conversion can be adapted
successfully to phoneme-to-phoneme conversion. Due to space
limitations, many salient details have been omitted in this doc-
ument; a full description of this work can be found in [1].

2. Grapheme-to-phoneme models
2.1. A conditional maximum entropy model

The most popular models for grapheme-to-phoneme conversion
are conditional models expressed as decision trees (e.g., [2, 3]).
In this method, there is a hidden alignment A describing which
phones align with each letter; e.g., an alignment for wharf is

li: w h a r f
pi: W ε OW R F

Typically, the probability Pr(P |L) is approximated as

Pr(P |A, L) ≈

m∏

i=1

p(pi|p
i−1

i−k, l
i+k
i−k) (2)

for some appropriate A, where m is the number of letters
in L and k is some window size (e.g., 3). The distribution
p(pi|p

i−1

i−k, li+k
i−k) can then be estimated using a decision tree.

In this work, we estimate the distribution p(pi|p
i−1

i−k, li+k
i−k)

using an exponential (or maximum entropy) model [4]:

p(pi|x = (pi−1

i−k, l
i+k
i−k)) =

exp(
∑

i
λifi(x, pi))∑

p′ exp(
∑

i
λifi(x, p′))

(3)

As in typical decision tree work, we consider features fi(·) that
can ask about the identities of phones and letters in specific po-
sitions and can form conjunctions of these questions. We use
iterative scaling to train the λi to optimize the conditional like-
lihood of the phone sequences given the letter sequences in the
training data, modulo a Gaussian prior on the λi for regulariza-
tion [5]. To select which features to include in the model, we
use a variation of the gain-based feature induction algorithm de-
scribed in [4]. Training consists of alternating stages of feature
induction and training the λi’s to convergence.

2.2. A joint maximum entropy n-gram model

Many joint models have been proposed for grapheme-to-pho-
neme conversion (e.g., [6, 7]). In these models, one has a vo-
cabulary of “chunks” ci, each consisting of some number of
letters paired with some number of phones. Here, we take the
chunk set to be any letter by itself, any phone by itself, and any
single letter paired with any single phone. Then, we have

Pr(L, P ) =
∑

C : letters(C) = L,

phones(C) = P

Pr(C) (4)

Pr(C = c1 · · · cm) =
m∏

i=1

Pr(ci|c1 · · · ci−1) (5)

We estimate Pr(ci|c1 · · · ci−1) using an ME n-gram model
smoothed with a Gaussian prior, as this type of n-gram model
has been shown to perform well [5].



To train this model, we considered both the conventional
and Viterbi versions of the Expectation-Maximization (EM) al-
gorithm. In the conventional version, we use dynamic program-
ming (DP) to calculate the relevant expectations, and use iter-
ative scaling in the maximization step to update the parame-
ters of the ME n-gram model. Viterbi EM is similar, except
that the expectation phase consists of taking counts on the most
likely chunking of the training data given the current model,
as calculated via DP. We found an effective training schedule
to be as follows: We start by training a unigram model with
conventional EM. Thereafter, we use Viterbi training, repeat-
edly increasing the maximum length of n-grams by one; adding
features to the model for all n-grams that occur in the Viterbi
chunking of the training data; and training to convergence.

2.3. Adding syllabification

An analysis of errors found in runs with the model described
in the last section revealed that syllabification information may
improve its performance. For example, the model generated the
baseform HH IH L ER Z (missing a T) for the word Hitler’s.
This may be because the model “drew a parallel” with the “t” in
a word like hither, where no T phone is present. However, if the
system “knew” a syllable boundary followed the “t”, it would
be clear that an analogy with the word hit would be more apt.

To achieve this behavior, we modify the model described in
Section 2.2 by adding a single chunk to the chunk vocabulary:
a chunk representing a syllable boundary. When training on
data annotated with syllable boundaries (in both the letter and
phone sequences), training is identical to before. When using
training data without syllable boundaries, we first insert syllable
boundaries using a model trained on supervised data, and then
we proceed as before. The most likely placement of syllables
given a model can be found via dynamic programming.

3. Grapheme-to-phoneme results
For the experiments in this section, we used the Pronlex lexicon
for English (version 0.2), which includes annotation describing
the type of each word (e.g., name or acronym). We discarded
all entries marked as acronyms or abbreviations, stripped stress
markings, and deterministically mapped the phone set down to
41 phones, leaving 98,216 baseforms. From the words with ex-
actly one pronunciation, we randomly selected 2000 words not
marked as special, 2000 words marked as (non-foreign) names,
and 800 words marked as foreign (400 name and 400 non-name)
to be the test set; similarly, a development set of half this size
was created, leaving 91,016 baseforms in the training set.

To generate the alignment of the training data needed by
the conditional ME model, we first trained a joint n-gram model
and computed the Viterbi chunking of the training data with this
model. We then derived the desired alignment from this chunk-
ing using a process that we do not have the space to describe. To
add syllabification to the Pronlex data in order to train syllabi-
fied n-gram models, we first built a syllabified n-gram model on
a Random House lexicon for which we had segmentation. We
used this Random House model to syllabify the Pronlex data.

We tuned various parameters on the development set. For
the conditional model, we tuned the window size in eq. (2)
(k = 5 was best), a single global variance for the Gaussian
prior, and when to terminate training. For the joint n-gram mod-
els, we tuned the maximum n-gram length and a single global
variance parameter. Beam pruning was used in all dynamic pro-
gramming computations for efficiency; beams were tuned to be

regular name foreign
PER WER PER WER PER WER

dcs. tree 5.0 27.9 13.5 53.3 24.3 75.4
cond. ME 2.6 14.4 8.9 36.9 19.2 62.6
9-gr.+syl. 1.6 8.3 8.1 32.6 18.0 60.5
8-gr. ME 1.6 8.7 8.0 31.9 17.5 59.3
5-gr. ME 2.0 11.0 8.6 34.0 18.6 61.3

Table 1: Performance of various models on Pronlex; last three
rows are joint ME n-gram models (syl. = syllabification).

past result ME 7-gram
source corpus PER WER PER WER

Pagel [8] OALD∗ 21.9 18.9
Marchand [9] NetTalk 34.5 32.1
Jiang [2] NetTalk 34.2 34.6

CMU 26.9 21.2

Galescu [6] CMU 7.0 28.5 5.9 24.7
CMU∗ 9.6 37.4 8.3 32.4

Bisani [7] Celex 4.0 2.7

Table 2: Comparison of performance of joint n-gram model
against results in literature; “∗” signals use of stressed vowels.

as small as possible without affecting performance significantly.
As a baseline, we use the publically-available Perl imple-

mentation of the conditional decision tree model described by
Black et al. [3]. We present results on the test set in Table 1; the
regular column corresponds to non-foreign non-names, name
is non-foreign names, and foreign is foreign words. Phone-
error rate (PER) is calculated analogously to word-error rate
in speech recognition; word-error rate (WER) is how often the
pronunciation of a word is not completely correct.

First, we notice that all of our new models significantly out-
perform the decision tree baseline. The difference is especially
large for “regular” words, with a reduction of over 65% rela-
tive in both PER and WER for the joint models. This may be
because for regular words, the training set will often contain
words very similar to words in the test set; e.g., it may contain
the same word with a different suffix. For these cases, models
that can memorize long n-grams, like the joint models, will do
very well. For the other test sets, the gains are smaller but still
large, being over 40% relative and 20% relative in both PER
and WER for names and foreign words, respectively.

We see that the conditional ME model outperforms the
baseline decision tree substantially, even though both models
are conditional and use the same types of questions. This is
partially because the baseline model conditions on a smaller
window (±3 rather than ±5 letters) and does not condition on
preceding phones (see eq. (2)), though it may also be partially
because the ME model is more effective at combining the same
information. Furthermore, we find that our joint models outper-
form the conditional models tested. We discuss reasons for this
in Section 7. For the plain ME n-gram model, we found n = 8
to be best on the development set; however, most of the gain
can be achieved with n = 5, as seen in the last line of Table 1.

While the syllabified n-gram model gave no gain over the
plain n-gram, this model can be used to syllabify words. While
the Pronlex lexicon does not contain syllable boundaries, we
acquired a version of the Random House dictionary that does
have this information. This lexicon contained 92,770 words af-
ter cleaning, of which we held out 5,000 words to form a test



set. Training a syllabified n-gram model on this data, the Viterbi
decoding of the test set (given both spellings and baseforms)
yielded a precision of 97.4% and recall of 96.8% for predict-
ing the location of syllable boundaries in the baseforms. In
contrast, we ran the tsylb2 rule-based syllabifier [10] (which
uses baseforms only) on the test set and achieved a precision of
73.8% and recall of 73.9%.

4. Related work
In this section, we compare the performance of our best model,
the joint ME n-gram model, against the best reported results for
various English data sets. We attempted to reconstruct the train-
ing and test sets used in past work as closely as possible given
their descriptions. As most past work does not make use of a
separate development set for parameter tuning, we arbitrarily
chose beforehand to run all of our contrast runs using an ME 7-
gram model with parameter settings optimized for Pronlex. Our
contrast results are summarized in Table 2. Some PER results
from the original papers have been omitted for the cases where
they calculate PER differently than we do. Note that multiple
entries for the same corpus may differ in how the corresponding
training and test sets were selected; please refer to the original
papers for details about each data set.

The ME n-gram achieves performance that is uniformly
as good as or better than the best results in the literature, de-
spite the simplicity of this technique. In contrast, Pagel et al.
[8] use a decision tree given part-of-speech information; Marc-
hand and Damper [9] use pronunciation by analogy augmented
with 5-way score combination; and Jiang et al. [2] use multiple
smoothed decision trees with phonemic trigram rescoring.

Galescu and Allen [6] and Bisani and Ney [7] both use
methods that can be categorized as joint chunk n-gram mod-
els, as described in Section 2.2. From the training data, Galescu
and Allen pre-derive a chunk vocabulary consisting of chunks
containing at least one letter and one phone; Bisani and Ney in-
crementally create k:l letter-to-phone chunks for 1 ≤ k, l ≤ 6
during training. Our superior performance can most likely be at-
tributed to three factors: First, we use a trivial chunk vocabulary
that includes 0:1 and 1:0 chunks; n-grams can model context-
dependent phenomena so intelligent chunk induction is unnec-
essary. Second, we use an excellent smoothing technique that
allows us to profitably build 8-gram models and larger; Galescu
and Allen note that 5-gram models with Witten-Bell discount-
ing are worse than the corresponding 4-gram models. Finally,
we repeatedly realign the training set during training, unlike
past work which trains the n-gram models on a fixed chunking.

5. Algorithms for lexicon merging
When merging lexicons that use different phone sets, we as-
sume that the goal is to map each lexicon into the phone set
of one particular lexicon, so the task is really one of phone
set mapping. A natural thing to try is to manually construct
a context-independent mapping between phone sets; however,
we have found that this works remarkably poorly. For example,
when manually mapping from the Random House dictionary to
the Pronlex lexicon, we achieved a PER of 9.0% on a test set
composed of “regular” words found in both lexicons. Using the
smart context-dependent techniques to be described below, we
can achieve a PER of 1.5% on the same test set.

To map a phone sequence in one lexicon to the correspond-
ing sequence in another phone set, we can apply grapheme-to-
phoneme algorithms to phoneme-to-phoneme conversion. We

regular name foreign
PER WER PER WER PER WER

manual 13.6 55.3 10.6 44.3 23.2 74.0
w/o lett. 3.1 14.7 8.4 34.4 19.8 64.8
w/ lett. 3.2 15.9 6.9 28.9 18.6 62.3

Table 3: Performance of various methods for mapping Orator
pronunciations to the Pronlex phone set.

regular name
lexicon PER WER PER WER

CMUdict 1.4 8.4 5.8 25.1
Random House 1.5 8.1 4.9 19.3
internal IBM 1.3 7.0 3.8 16.4

Table 4: Quality of mapped pronunciations when mapping var-
ious lexicons to the Pronlex phone set.

can create a training set by selecting words that occur in both
lexicons with exactly one pronunciation. As the joint ME n-
gram model performed best for grapheme-to-phoneme, we also
use this model for phone set mapping.

However, sometimes, mapping from one phone set to an-
other cannot be done unambiguously without also looking at
the spelling of a word. For example, a phone set used at IBM
contains the phone DX, which maps to either the phone D or
T in Pronlex depending on whether the corresponding letter in
the word is “d” or “t”. While it is possible to extend the joint
n-gram to include this extra source of information, we were
skeptical that it would work well. Instead, it is straightforward
to extend the conditional ME model to also condition on letter
information. In the equations in Section 2.1, we simply replace
x = (pi−1

i−k, li+k
i−k) with x = (pi−1

i−k, qi+k
i−k , li+k

i−k) where q1 · · · qm

is the phone sequence in the source phone set. For training, we
need a 3-way alignment between the letter sequence and both
phone sequences. This can be produced by training a grapheme-
to-phoneme model and a pure phoneme-to-phoneme model;
computing a grapheme-to-phoneme alignment and phoneme-to-
phoneme alignment; and merging the two alignments.

6. Results for phone set mapping
For our first set of mapping experiments, instead of mapping
from one lexicon to another, we map the output of the commer-
cial Orator system, a rule-based system with dictionary lookup
optimized for names [11]. To create a training set for our phone
set mapping models, we generated Orator pronunciations for
each word with a unique pronunciation in the Pronlex train-
ing set described in Section 3. We manually constructed a
context-independent phone set map; ran the joint ME n-gram
for mapping without letter information; and ran the conditional
ME model for mapping with letter information. To evaluate the
quality of the mapping, we compared the mapped pronuncia-
tions against the actual Pronlex baseforms for words in our test
sets. The results are given in Table 3.

As we can see, the ME models substantially outperform the
manual mapping, and on average, the conditional model with
letter information slightly outperforms the joint model without
letter information. Comparing against the results in Table 1, we
see that our best mapped Orator pronunciations actually out-
perform our best grapheme-to-phoneme model on the names
test set. However, note that the mapping models have sufficient



French German Italian
train set PER WER PER WER PER WER

Pronlex 28.5 69.7 8.7 31.8 15.1 58.4
+RH 21.6 57.9 7.4 27.9 13.2 54.7

Table 5: Performance of merging Random House lexicon with
Pronlex on foreign word test sets.

expressive power to correct errors; indeed, as the conditional
model has access to the spellings of words, it need not look at
the source phone sequence at all to do well. Thus, we cannot
separate the contributions of the quality of the original lexicon
and the power of the mapping model to the final performance.

In these next experiments, we mapped several lexicons to
the Pronlex phone set: CMUdict version 0.6d, a version of the
Random House dictionary, and an internal IBM lexicon. We
took all words with exactly one baseform in both the source
dictionary and Pronlex and extracted 2000 regular words and
1000 names to be a test set; the remaining words formed the
training set. (Thus, the test sets were different for each source
dictionary.) Results with the conditional ME mapping model on
the test sets are presented in Table 4. While the test sets are not
identical, comparing these values with those in Table 1 and 3
indicate that using automatically mapped pronunciations from
existing lexicons (when available) is superior to using purely
automatically generated pronunciations; this would not be the
case if using a context-independent phone set mapping.

6.1. Lexicon merging

In our final experiments, we examine whether a grapheme-to-
phoneme model trained on the Pronlex lexicon merged with
the Random House lexicon can outperform a model trained
on Pronlex alone. In particular, the Random House lexicon
contains more foreign words with “native” pronunciations (i.e.,
words pronounced as they would be in their country of origin),
and thus should improve performance for these cases. To merge
lexicons, we mapped the Random House lexicon to the Pronlex
phone set using our conditional ME algorithm and only added
pronunciations for words that were not already in Pronlex.

However, since Pronlex does not contain many native pro-
nunciations, it is unlikely that adding Random House baseforms
would help much on Pronlex test sets (especially considering
phone mapping error), and this is indeed borne out by runs
on the Pronlex test. Thus, we created new test sets contain-
ing words with native pronunciations; we selected appropriate
French, German, and Italian words from an internal IBM En-
glish lexicon by using an automatic language identification al-
gorithm and by comparing pronunciations with those found in
French, German, and Italian lexicons. This yielded a total of
1510 words; results on this test set are given in Table 5. We see
a consistent gain when adding Random House data, demonstrat-
ing the effectiveness of lexicon merging when training models.

7. Discussion
In this paper, we introduce several novel methods for grapheme-
to-phoneme conversion and show that they significantly outper-
form existing methods. We propose both joint and conditional
models, and find that our joint models yield the best perfor-
mance. As hypothesized in Section 3, good performance on
grapheme-to-phoneme (especially for regular words) may de-

pend largely on an algorithm’s ability to memorize long let-
ter/phone sequences in the training data, and n-gram models
naturally do this. Decision trees and conditional ME models
are much less predisposed to memorizing sequences, and it is
not clear how to adapt them to this purpose without sabotaging
their strengths.

In addition, joint models do not require pre-aligned data for
training, and are a natural way for producing the alignments
needed to bootstrap conditional models. Furthermore, joint
models are typically symmetric and hence can be used straight-
forwardly for both grapheme-to-phoneme and phoneme-to-
grapheme conversion [6].

However, conditional models have advantages in terms of
search. We varied the decoding beam used with a conditional
model and a joint model and found that the minimum beam
without search errors was ∼100.5 and ∼104, respectively. That
is, conditional models require a much narrower search, as con-
ditional models predict the next phone conditioning on many
letters in the future, while joint models do not have any looka-
head at all. As a result, decoding with conditional models takes
about half the time as with joint models with our implementa-
tions. Finally, we show that conditional models can be effective
when mapping a lexicon from one phone set to another, as it is
straightforward to condition on multiple information streams in
this framework.
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