
Using Place Name Data to Train Language Identification Models

Stanley F. Chen, Benoı̂t Maison

IBM T.J. Watson Research Center
P.O. Box 218, Yorktown Heights, NY 10598
{stanchen,bmaison}@us.ibm.com

Abstract

The language of origin of a name affects its pronunciation, so
language identification is an important technology for speech
synthesis and recognition. Previous work on this task has typ-
ically used training sets that are proprietary or limited in cov-
erage. In this work, we investigate the use of a publically-
available geographic database for training language ID models.
We automatically cluster place names by language, and show
that models trained from place name data are effective for lan-
guage ID on person names. In addition, we compare several
source-channel and direct models for language ID, and achieve
a 24% reduction in error rate over a source-channel letter tri-
gram model on a 26-way language ID task.

1. Introduction
The language of origin of a name affects its pronunciation;
for example, the name Jean is pronounced differently in the
names Billie Jean King and Jean-Paul Sartre. Thus, auto-
matic language identification has application in speech syn-
thesis and recognition tasks, e.g., spelling-to-sound conversion
[1, 2]. Language identification can be framed as the following
task: given a word or sequence of words W , find the language
L∗ that maximizes Pr(L|W):

L∗ = arg max
L

Pr(L|W) = arg max
L

Pr(W |L)Pr(L) (1)

Past work in language ID has included both source-channel ap-
proaches, where one estimates the two distributions Pr(W |L)
and Pr(L); and direct (or channel) models which estimate
Pr(L|W) directly. Common to both of these approaches is the
need for training data consisting of word or name lists for each
language under consideration. However, rich, wide-coverage
name lists are difficult to acquire, and past work on language
ID has generally used data that is proprietary and/or limited in
extent and coverage. Complicating the task is that most applica-
tions require data in a single alphabet (e.g., the Latin alphabet).

In this work, we investigate the use of the publically-
available GEOnet Names Server database provided by the Na-
tional Imagery and Mapping Agency (USA) in training lan-
guage ID models. This database contains over 5 million place
names rendered in the Latin alphabet, and covers most nations
in the world. To use this data for language ID, we need to cate-
gorize place names by language of origin. We describe a novel
algorithm for clustering place names by language; we then man-
ually assign language identities to each cluster. To evaluate
this clustering, we compare place name models against models
trained on (non-name) word lists on a small person name lan-
guage ID task, and find that place models outperform the word
models by a wide margin.

In the latter part of this paper, we compare several mod-
els for language ID, including both source-channel and direct
models. We implement a baseline source-channel letter n-gram
model, as well as a maximum entropy direct model and ex-
tensions of models by Vitale [1] and Yvon [3]. We evaluate
these models on a wide-coverage language ID task, and find
that source-channel n-gram models perform well. Due to space
limitations, many salient details have been omitted in this doc-
ument; a full description of this work can be found in [4].

2. Processing place names for language ID
In this section, we describe how we processed the raw place
name data to yield the language-specific training sets we used
in our experiments. Starting with data downloaded from the
GEOnet Names Server,1 we tokenized place names by spacing,
converted names to uppercase, and discarded all tokens con-
tained in the Enable Scrabble dictionary2 as many foreign place
names contain English terms. The GEOnet Names Server does
not have place names for the U.S.; for U.S. data, we down-
loaded place names from the United States Geological Survey
web site.3 To come up with an initial pool of country data, we
took all countries whose processed data was above a certain size
(approximately 5000 unique tokens); this resulted in 90 coun-
tries not including the U.S.

2.1. Clustering country data

Consider the following model of generating place names W
given the country C they are located in:

Pr(W |C) ≈
∑

L

p(L|C)p(W |L) (2)

where L is a hidden variable encoding a word’s language of
origin, p(L|C) estimates what fraction of a country’s place
names comes from each language, and P (W |L) is a model
of place spellings given the language. It seems plausible that
if we simply do maximum likelihood (ML) estimation of the
preceding models, we may achieve reasonable results. (Given
the above models, we can label the language of a place W as
arg maxL p(L|W,C) = arg maxL p(L|C)p(W |L).)

However, past work indicates that unsupervised ML esti-
mation does not always yield satisfactory classification perfor-
mance. Instead, we constrain the learning task by assuming that
for most languages, there exists a country whose place names
are primarily derived from that language; i.e., for most lan-
guages L, p(W |L) ≈ p(W |C) for some country C. Then,
we need not perform the unconstrained training of p(W |L)

1http://www.nima.mil/gns/html/
2ftp://puzzlers.org/pub/wordlists/enable1.txt
3http://geonames.usgs.gov/

A© germany: germany (0.930)
B© austria: germany (0.879)
C© belgium: neth. (0.513), france (0.275), germany (0.060)
D© brazil: brazil (0.779)
E© mexico: mexico (0.743), peru (0.077), brazil (0.052)
F© peru: peru (0.807), mexico (0.090)
G© portugal: brazil (0.731), mexico (0.070)
H© cuba: mexico (0.552), brazil (0.143), peru (0.094)

Table 1: Examples of country clustering. On left is country C;
on right is list of countries C ′ and values p(C′|C) (see eq. (3)).

(for hidden languages L), and can instead build fixed models
p(W |C) (for observed countries C). Instead of eq. (2), we have

Pr(W |C) ≈
∑

C′∈C

p(C′|C)p(W |C′) (3)

The optimization problem can then be framed as finding the
minimal set of countries C that covers all relevant languages; we
can manually assign languages to countries in C after training.

To assure that C covers all relevant languages, ML esti-
mation may be inappropriate since this only makes guarantees
about the global likelihood. Instead, we take our objective func-
tion to be the maximum log likelihood per token loss in any sin-
gle country C, where the loss is calculated relative to the like-
lihood of that country’s data according to the model p(W |C)
trained solely on that country’s place names.

We began training with C containing all 90 of our original
(non-U.S.) countries. We repeatedly removed the member of C
that resulted in the lowest loss in the objective function, until C
contained a single country. We manually inspected all interme-
diate sets C and chose the C containing 48 countries to be the
final clustering C∗. To calculate the loss associated with remov-
ing a country, we reestimate the distribution p(C ′|C) using the
EM algorithm before calculating the data likelihood. The model
p(W |C) was chosen to be a letter 5-gram model. The objective
function was computed on 1000 tokens from each country held
out from the data used to train the n-gram models.

In Table 1, we list examples of p(C ′|C) for the final clus-
tering for several countries C; the table only includes C ′ for
which p(C′|C) > 0.05. Case A© is an example of a country,
Germany, included in the final set C∗ of representative coun-
tries; case B© is an example of a country not included in C∗ but
which is fairly pure in a single language. Case C© is an example
of a country not included in C∗ that has place names originating
from several languages; indeed, the official languages of Bel-
gium are Dutch, French, and German. Finally, cases E© through
H© show how Spanish and Portugese place names were handled.
The model decided that Brazil, Mexico, and Peru were “basis”
countries, and expressed all other Spanish/Portugese-speaking
countries as mixtures of these countries.

2.2. Assigning place names to languages

While the preceding process produces a set of countries that
may each correspond to a different language, ultimately we
want to create data labeled by language. Here, we define each
country in C∗ to be its own pseudolanguage. For an applica-
tion, we can do language ID in terms of pseudolanguages, and
then manually map from pseudolanguage ID’s to the “true” lan-
guage ID’s in a manner appropriate for the application. Then,
we can share pseudolanguage models across applications while
only changing the pseudolanguage-to-language map.

To select the place names to be included in the training
data for each pseudolanguage, we chose a conservative strat-
egy to emphasize quality of data over quantity. For each coun-
try/pseudolanguage C′ ∈ C∗, we took its training data to be all
place names from countries C such that p(C ′|C) > 0.7. That
is, we only used data from “pure” countries; place names in
countries that are mixtures of several pseudolanguages were not
included in any training set. This process resulted in 41 pseu-
dolanguages containing data from a single country, five con-
taining data from two countries,4 and two containing data from
three.5 While it may be possible to salvage data from impure
countries, we leave this matter for future investigation.

3. Validating the use of place name data
In this section, we evaluate the quality of our place name data
sets against non-name data sets for a five-way language ID task
on person names, to assess whether place name data are effec-
tive for non-place language ID. For the baseline non-name data
sets, we used the Moby word lists6 for French, German, Italian,
and Spanish; and the Enable Scrabble dictionary for English.
We extracted the test set from players ranked by the World
Chess Federation7; this list contains about 45,000 people and
their countries of origin. We created a random test set of 500
players each from France, Germany, Italy, Spain, and England;
for each name, we assume that the country of origin accurately
reflects the language of origin.

In the test set, we removed abbreviations, changed non-
alphabetic characters to spaces, removed single-character to-
kens, and changed all characters to uppercase. Similarly, dia-
critic marks were stripped from the baseline word lists and to-
kens with nonalphabetic characters were discarded. The result-
ing training sets were 131k, 159k, 60k, 86k, and 173k words,
respectively, for French, German, Italian, Spanish, and English.
For the place name data sets, for each country C we selected the
cluster corresponding to the country C ′ maximizing p(C′|C).
The resulting country clusters were France, Germany/Austria,
Italy, Mexico, and the United Kingdom, with training set sizes
of 62k, 129k, 18k, 21k, and 17k words, respectively.

To perform language ID, we used a source-channel letter n-
gram model [5] (see Section 4.1). The probability p(W |L) was
calculated using a letter 5-gram model trained with modified
Kneser-Ney smoothing [6]. Since we have a balanced test set,
we used a uniform prior over languages p(L).

training set test accuracy
word lists 62.2%
place names 78.8%

As seen above, the place name models outperformed the non-
name models by a wide margin, despite the place name train-
ing sets being substantially smaller and despite the mismatch
in country data used; e.g., Mexican place name data were used
to identify Spanish players. We conclude that place name data
can be effective for person name ID, and may be much more
suitable for this task than non-name word lists.

4. Models for language identification
In this section, we discuss several models for language ID; re-
sults for these models are presented in Section 5.

4Braz./Port., China/Taiw., Germ./Austr., S. Kor./N. Kor., Mor./Alg.
5Egypt/Saudi Arabia/Yemen, Bosnia and Herz./Croatia/Yugo.
6http://www.dcs.shef.ac.uk/research/ilash/Moby/
7http://www.fide.com/

4.1. Source-channel n-gram models

In this approach, the distribution p(W |L) in eq. (1) is estimated
using a letter n-gram model:

p(W |L) =
k

∏

i=1

pL(li|li−n+1 · · · li−1) (4)

where a word W is composed of the letters l1 · · · lk. As smooth-
ing can significantly affect classification performance, we con-
sider several smoothing algorithms: Witten-Bell smoothing [7];
modified Kneser-Ney smoothing [6]; and maximum entropy
(ME) n-gram models smoothed with a Gaussian prior [8].

We also consider a novel method for smoothing ME n-gram
models, cross-model ME smoothing. Typically, one smooths a
probability pL(li|l

i−1

i−n+1) towards the probability for a shorter
n-gram pL(li|l

i−1

i−n+2). In language ID, we have an additional
source of information: the data from other languages; i.e., we
can smooth the language-dependent probability pL(li|l

i−1

i−n+1)

with a language-independent model p(li|l
i−1

i−n+1). We can
achieve this behavior with an ME model by adding language-
independent n-gram features; the Gaussian prior can then be in-
terpreted as smoothing the language-dependent models toward
the model defined solely by the language-independent features.

4.2. Direct maximum entropy classifier

It has been argued that direct models may be more appropriate
than source-channel models for classification tasks as the nat-
ural objective function, conditional likelihood, is more closely
related to classification performance than the natural objective
function for source-channel models, joint likelihood. Here, we
describe a model that uses n-grams like the models in Sec-
tion 4.1, but which is direct rather than source-channel.

We use a maximum entropy model [9]:

p(L|W) =
exp(

∑

i λifi(W,L))
∑

L′ exp(
∑

i λifi(W,L′))
(5)

We selected the set of features fi(·) to be

f~l,L′ (W,L) =

{

1 if W contains ~l and L = L′

0 otherwise
(6)

for all n-grams ~l up to a certain length (e.g., 5) and languages
L such that f~l,L′ (·) is active in the training set. The λi were
trained to optimize the conditional likelihood of L given W for
the training set modulo smoothing with a Gaussian prior [8].

4.3. Other direct models

We consider several ways of expressing p(L|W) as a func-
tion of the probabilities p(L|~l) for the n-grams ~l present in W .
In [1], Vitale estimates p(L|W) by the arithmetic average of the
probabilities p(L|~l) for all trigrams present; p(L|~l) is estimated

on training data as
c~l,L

/uL
∑

L′ c~l,L′
/uL′

, where c~l,L is the count of

the trigram ~l in language L and uL is the number of distinct n-
grams found in L. Our experiments suggest the two following
modifications to this technique: normalizing c~l,L by the total
number of n-grams in language L rather than the number of
unique n-grams, and increasing the n-gram length to 5.

Another model we consider is a stochastic version of the
“overlapping chunks” model proposed by Yvon [3] for the
spelling-to-sound problem. A word W can be represented

smoothing n accuracy

Witten-Bell 3 62.7%

Witten-Bell 5 67.5%
modified KN 5 69.1%
ME 5 69.9%
cross-model ME 5 70.0%

model n accuracy

Vitale 3 44.3%

modified Vitale 5 62.7%
overlapping chunks ≤6 66.8%
avg. chunk length ≤7 61.3%

Table 2: Accuracy on 48-way place name test set for source-
channel n-gram models (top) and other models (bottom).

as a sequence S of overlapping chunks of up to n letters.
The probability p(L|W) is estimated as the maximum of the
product of chunk probabilities over all possible sequences S:
maxS

∏

~l∈S
p(L|~l), where p(L|~l) is estimated as above.

Finally, we also consider a non-stochastic counterpart to the
previous algorithm (inspired by [3]) that assigns to each lan-
guage L a score S(L, W) defined as the maximum average
chunk length maxS(

∑

~lL∈S
|~lL|)/|S|, where the ~lL are taken

from the inventory of chunks collected from the training set.

5. Results
5.1. Source-channel n-gram model results

In this section, we compare various smoothing algorithms and
n-gram orders on the data sets described in Section 2.2. We
created a matched test set consisting of 1000 words from each
of the 48 language clusters held out from the training sets, and
a development test set of half the size. We take our baseline
algorithm to be a trigram model with Witten-Bell smoothing, as
this is similar to models from the literature [5, 2]. We present
selected results at the top of Table 2.

We see that higher-order n-gram models can outperform tri-
gram models; on the development set, we found 5-gram models
gave the best performance. Furthermore, smoothing can signif-
icantly affect performance, with the maximum entropy n-gram
models performing best. Cross-model ME smoothing gave al-
most no additional gain over plain ME smoothing. For the ME
models, smoothing was parameterized by a single global vari-
ance value that was optimized on the development set.

5.2. Direct ME model results

To examine the direct ME model described in Section 4.2, we
began with a small balanced training set covering five lan-
guages. We used the same data sets as used in Section 5.1,
except restricted to the five languages used in Section 3 and
with training sets truncated to 15000 place names. Optimizing
a single global variance parameter for each model on the devel-
opment set, we achieved the following test set accuracies:

direct ME 85.6%
source-channel ME 86.7%
source-channel ME, cross-model 86.8%

Due to the absence of any gain over the source-channel models
and the resource requirements of training the direct model, we
decided not to pursue this approach further.

5.3. Results for other direct models

We compared the different models described in Section 4.3 on
the 48-way test set mentioned above; results are given in the
bottom of Table 2. The best n-gram length for each model was
chosen on the development set. The stochastic version of the
“overlapping chunks” technique clearly outperforms its non-
stochastic counterpart (i.e., average chunk length), as well as
Vitale’s fixed-length n-gram model. We hypothesize that let-
ting the model use n-grams of variable size has a smoothing
effect that explains its better performance.

5.4. A wide-coverage person name task

In this section, we describe experiments on a 26-way person
name language ID task, to demonstrate performance on a re-
alistic, wide-coverage task. From the World Chess Federation
player lists, we extracted players from all countries containing a
minimum number of players and which speak primarily a single
language. Players were also collected from Go player rankings8

to boost the representation of China, Korea and Japan. Multi-
ple countries speaking the same or very similar languages were
grouped into the same cluster in the test set. Finally, names
with a last name common to multiple clusters were discarded.
As before, we assume the country of origin correctly identifies
the language of origin of each name. This resulted in a test set
containing 21349 names in 26 language clusters, ranging from
3891 players for Russia/Ukraine to 110 players for Kazakhstan;
we held out a development set half the size of the test set. Re-
sults for the source-channel cross-model ME n-gram model and
the overlapping chunks model were as follows:

accuracy cross-model overlapping
ME n-gram chunks

uniform prior 65.1% 65.1%
true prior 71.7% 70.6%
(true prior)a 73.4% 72.2%
trained prior 74.7% 73.7%

The “prior” is the prior distribution of languages p(L) in eq. (1);
the “true” prior is the distribution of languages calculated from
the development set. For the third line in the table, we raised
the true prior to a power in eq. (1), optimizing this value on
the development set. Finally, the last line refers to the uncon-
strained training of p(L) on the development set to optimize
accuracy. For reference, the analogous number to the last line
for the baseline Witten-Bell trigram model is 66.8%; our best
model, the cross-model ME n-gram, achieves a 24% reduction
in error rate over this baseline.

6. Related work
Past work in language ID for names/words has included both
source-channel and direct approaches. Church [10] uses a
model similar to a source-channel letter trigram model and Vi-
tale [1] combines n-gram-based filtering rules with the direct
model described in Section 4.3; both present only anecdotal re-
sults. Riis et al. [11] use a direct neural network model and
report an accuracy of 86.4% on 4-way classification for words.
Häkkinen and Tian [5] compare source-channel n-gram models
with a direct decision-tree model and report that n-gram mod-
els are superior, achieving an accuracy of 71.8% on a 4-way
language ID task for person names with an “extended” bigram
model. Llitjós [2] uses a source-channel letter trigram model

8http://www.gobase.org/information/players/

similar to our baseline model and reports a 73% accuracy on
5-way language ID for proper names.

To provide an indirect comparison with Riis et al. [11] and
Häkkinen and Tian [5], we constructed training sets of the same
size over the same language set, but using place name data in-
stead. On a place name test set, we achieve accuracies of 90.9%
(same training set size as [5]) and 92.8% (same training size as
[11]) using a Kneser-Ney 5-gram model, though little can be
concluded from this due to the different data sets used.

7. Discussion
In this work, we have demonstrated that public place name data
can be used effectively for training wide-coverage language ID
models, and can be substantially more effective than non-name
word lists. Using a novel clustering algorithm, we produced a
48-way clustering of place names by language, yielding a set of
language distinctions which should be sufficiently fine-grained
for most language ID applications, but which still offers good
inter-class discriminability: we can perform 48-way place name
language ID over this set with an accuracy of 70.0%.

In addition, we compared several algorithms for language
identification. Despite arguments for the suitability of direct
models for classification, we found that the source-channel
models we examined performed as well as or better than our
direct models. Our best model, a source-channel ME n-gram
model with cross-model smoothing, achieved an accuracy of
74.7% on a 26-way person name ID task, a 24% relative im-
provement over a baseline source-channel trigram model.

8. References
[1] T. Vitale, “An algorithm for high accuracy name pronun-

ciation by parametric speech synthesizer,” Comp. Ling.,
vol. 17, no. 3, pp. 257–276, 1991.

[2] A. F. Llitjós, “Improving pronunciation accuracy of pro-
per names with language origin classes,” in Proc. of the
Seventh ESSLLI Student Session, Trento, Italy, 2002.

[3] F. Yvon, “Grapheme-to-phoneme conversion using multi-
ple unbounded overlapping chunks,” in Proc. of NeMLaP,
Ankara, Turkey, 1996, pp. 218–228.

[4] S. F. Chen and B. Maison, “A study of automatic graph-
eme-to-phoneme conversion,” IBM Research, Tech. Rep.,
2003, in preparation.

[5] J. Häkkinen and J. Tian, “N-gram and decision tree based
language identification for written words,” in Proc. of
ASRU, Trento, Italy, December 2001.

[6] S. F. Chen and J. Goodman, “An empirical study of
smoothing techniques for language modeling,” Computer
Speech and Language, vol. 13, no. 4, pp. 359–393, 1999.

[7] T. C. Bell, J. G. Cleary, and I. H. Witten, Text Compres-
sion. Englewood Cliffs, N.J.: Prentice Hall, 1990.

[8] S. F. Chen and R. Rosenfeld, “A survey of smoothing tech-
niques for maximum entropy models,” IEEE Trans. on
Speech and Audio Proc., vol. 8, no. 1, pp. 37–50, 2000.

[9] A. Berger, S. Della Pietra, and V. Della Pietra, “A max-
imum entropy approach to natural language processing,”
Comp. Ling., vol. 22, no. 1, pp. 39–71, 1996.

[10] K. Church, “Stress assignment in letter to sound rules for
speech synth.,” in Proc. of ACL, July 1985, pp. 246–253.

[11] S. K. Riis, M. W. Pederson, and K. Jensen, “Multilingual
text-to-phoneme mapping,” in Proc. of Eurospeech, 2001.

